{ "metadata": { "name": "", "signature": "sha256:c3576460819338e9a57edd28917402060e5a2bd5a76892aa37ee983fa7bdb3da" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "

Problem Generator Notebook

\n", "
\n", "

\n", "This notebook doesn't go with any particular section of the notes.\n", "It is intended to generate \"random\" problems of various types." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This setup cell below must be run first" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import sglib\n", "reload(sglib)\n", "from sglib import *\n", "# The next import makes expressions like 1/2 work.\n", "# So you no longer have to say frac(1/2)\n", "from __future__ import division" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Contents

\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " \n", "

Status

\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Vector Problems

\n", "" ] }, { "cell_type": "code", "collapsed": false, "input": [ "prob = vector_problem(max_dim=3, max_int=5, complex=True)\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "$\\left[\\begin{matrix}5 + 4 i & 2 + i\\end{matrix}\\right]^{\\dagger}$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = sqrt(33)\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The correct answer is:\n" ] }, { "html": [ "$\\left[\\begin{matrix}5 - 4 i\\\\2 - i\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Matrix Problems

\n", "" ] }, { "cell_type": "code", "collapsed": false, "input": [ "prob = matrix_problem(max_dim=2, max_int=5, complex=True)\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "$\\left[\\begin{matrix}i & 3 + i\\\\2 + 3 i & 5 i\\end{matrix}\\right] - \\left[\\begin{matrix}2 + 2 i & 4 + 2 i\\\\4 + 2 i & 3 + 5 i\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = Matrix([ (4,8), (7,27) ])\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The correct answer is:\n" ] }, { "html": [ "$\\left[\\begin{matrix}5 + 10 i & 3 + 4 i\\\\4 + i & 8 + 6 i\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Matrix Test" ] }, { "cell_type": "code", "collapsed": false, "input": [ "M = Matrix([ (1,2,3), (4,5,6), (7,8,9) ])\n", "Print('$%s$'%sy.latex(M)) " ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "$\\left[\\begin{matrix}1 & 2 & 3\\\\4 & 5 & 6\\\\7 & 8 & 9\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Basis Problems

\n", "
    \n", "
  • In all of these problems, the original vector is given in the\n", " \"standard\" basis (1, 0) and (0, 1).
  • \n", "
  • All vectors in these problems are column vectors.
  • \n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "prob = change_basis_problem(max_int=5, complex=False)\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Transform the vector $\\left[\\begin{matrix}5\\\\4\\end{matrix}\\right]$ to the basis $\\left(\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\1\\end{matrix}\\right],\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\-1\\end{matrix}\\right]\\right)$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = col(0,0)\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The correct answer is: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}9\\\\1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Draw Projections

\n", "
    \n", "
  • Pick the cell below that is closest to the problem you're interested in and then modify it for your problem.
  • \n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(vector(1,1)/sqrt(2), vector(1,-1)/sqrt(2), vector(2,3))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}2\\\\3\\end{matrix}\\right]$, and its projection on the basis: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\1\\end{matrix}\\right],\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}5\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHcBJREFUeJzt3X10VPW97/HvToYQYxREVqCSYJAHk5CYDHCID9DuiIEI\nxqrgElmoR2r/8Nz2tNhSROo1XV4iipYruvTc6goC3sNpQRFRjETIoNYiB5PwIA+igiRgBNQGIoSQ\nmX3/wMkdQiaZzN4ze/9m3q+1Zq0kM9nzNWv8+PMzv71HMwxDAADqSLB7AABAzxDcAKAYghsAFENw\nA4BiCG4AUIwrkgfXNI0tKwAQBsMwtGD3RXzFbRhGt7fHHnsspMfZcXPybE6fz8mzGYYR8uuTv51a\n88XCbN2hKgEAxRDcAKAYRwS3rut2jxCUk2cTcfZ8Tp7N6Zz+t3PyfPEwmxZKnxL2wTXNiOTxATM0\nTQupTwSi7cfXZuTenPR6vYlut7u2tLR0ndljAQC6Zzq4n3322d/k5OTsZusfAESHqeBuaGhIX79+\n/eQHHnjg5a6W9QAA65gK7tmzZy9etGjRnISEBJ9VAwEAuhb2mZNvvfXWLWlpaUfdbnetx+PRgz2u\nrKys/Wtd1x39ji8A2MHj8YjH4wn58WHvKnnkkUfKV6xYcY/L5WpraWlJPnHixKVTp059bfny5fe2\nH5xdJXAwdpXAqbrbVWLJdsDNmzf/7Omnn/79unXrSjs8OcENxyK44VQR3w4Y8ET8GwAAUcAJOIhb\nrLjhVFFbcQMAooPgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIohuAFAMQQ3ACiG4AYAxRDcAKAY\nghsAFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACgGIIbABRDcAOAYghuAFAMwQ0AiiG4\nAUAxBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIoxFdwtLS3JhYWFHxcUFNTl5OTsnjdv\n3hNWDQYA6JxmGIapA5w6dSolJSXlVFtbm2vcuHEfPv30078fN27chyIimqYZZo8PRIqmacLrE070\n42tTC3a/6aokJSXllIhIa2trktfrTezXr993Zo8JAAjOZfYAPp8vYdSoUTVffPHF0AcffPDFnJyc\n3YH3l5WVtX+t67roum72KQHYqKmlSaq+rJJpOdPsHiVmeDwe8Xg8IT/edFXi19TU1GfSpEnvLly4\n8GFd1z0iVCVwNqqSnvH6vPJSzUvyh6o/yBnvGWmZ3yKaFvT/5mFCxKsSvz59+jRNmTLl7W3bto2x\n6pgAnKH6QLVc/fzV8vsNv5eTrScl7eI0QttGpoL7+PHj/f/5z3/2FRE5ffr0RVVVVcVut7vWmtEA\n2O3z7z6XiSsmyi0rb5Evvv9Cfjj7g4iIXNnnSpsni2+mOu6vv/76J/fdd98yn8+X4PP5Eu65554V\nEyZM2GjVcADs0dTSJI95HpO/fPIXafW2itfwnnf/1ZdfbdNkEDEZ3Hl5eTtrampGWTUMAHv5e+y5\n782VVm+rtLS1XPAYV4JLru5PcNvJ9K4SALGh+kC1/HLdL6WxubG9EunMRa6LZEjfIVGcDB0R3ABk\nS8MWuXH5jSE9VtM0yeybGdmB0CWuVQJACgcVSsWtFZKalCquhK7Xc2fazhDcNiO4AYimaXK/+37Z\n+z/2yg0ZN8jFvS4O+lif4ZP+Kf2jOB06IrgBtBt06SCpvq9anrv5ORER0eTCvdoDUgewh9tmBDeA\n82iaJldddpWIiAxMHXjB6ps93PYjuAGcx+vzir5Ml77JfeXwQ4fluZufO6/7Zg+3/QhuAOf5l5f+\nRUREGn/XeEH3rYnGHm4HYDsggHabD26W2sZaWXXnKunt6t3+c3/3vXr3ahl9xWgbJ4SIhVcH7PTg\nXB0QDsbVAc/n9XnF9bhL+ib3le/nfm/3OHEtalcHBKC2wIoEzkZwAwhakcCZqEoQt6hKzqEicR6q\nEgBdoiJRD7tKgDhmZ0ViGIYc8x6Tfa37JCUhRUYns1slVAQ3EKcCT7SJ1gf/Bob13ta90mq0ile8\n4u7tjsrzxwqCG4hT0apIgoW1IefeX3CJS7KSsiI6Q6whuIE4FOmKpLuwDpSkJUn/RK422BMENxBn\nIl2R7DmzRz48/WGXYe2niSZZSVlcbbCHCG4gzkS6Iumt9ZYWo0V84uv2sYmSSE0SBrYDAnEkGrtI\nrkq6SkpSSsQVwrqQmiQ8BDcQJ6K5i2R47+EyMWVil+FNTRI+ghuIE9E+0cYf3sFQk4SP4AbigF0n\n2hz3Hg96HzVJ+AhuIMbZcaKNiMg/Tv1Dtp7ZKmN7j5XJKZPPq02oScxhVwkQ4+y4FklgaF+Xcl37\nzzec2iBt0kZNYhIrbiCG2VGRBAttf+edIAnUJCZxWVfErVi/rKsdl2sNFtqBvmz9Us4YZyS7d3ZU\nZlJRd5d1pSoBYlS0K5JQQlvk3D5vmENVAsSgaFckoYY2rGEquOvr6zOKioqqR44c+Wlubu6uJUuW\n/LtVgwEIT7R3kRDa0Weq425sbBzY2Ng4sKCgoK65uTl19OjRn7zxxhu3ZWdn7xGh44azxWrHPer/\njJLaxlppmd8S8dU2oR0ZEf3osoEDBzYWFBTUiYikpqY2Z2dn7zly5MgVZo4JIHzRrEgIbftY9ubk\nwYMHM2tra92FhYUfB/68rKys/Wtd10XXdaueEkCAaFYkhLa1PB6PeDyekB9vyXbA5ubmVF3XPX/8\n4x//12233fZG+8GpSuBgsVaVRKsiIbQjL+Kf8n727NleU6dOfW3mzJmvBoY2gOiJVkVCaDuDqRW3\nYRjafffdt+zyyy//dvHixbMvODgrbjhYrKy4o3WiDaEdPRFdcf/973+/4dVXX51ZXV1d5Ha7a91u\nd21lZWWJmWMC6JlonGhDaDuLqTcnx40b96HP5+MkHsAm0ahICG3n4VoliFuqVyXRqEgIbXtE/M1J\nAPaIdEVCaDsXwQ0oKNIVCaHtbFQliFuqViWRrkgIbftRlQAxJpIVCaGtBoIbUEgkKxJCWx1UJYhb\nqlUlkaxICG1noSoBYkSkKhJCWz0EN6CASFUkhLaaqEoQt1SpSiJVkRDazkVVAiguEhUJoa02ghtw\nsEhUJIS2+qhKELecXpVEoiIhtNVAVQIoyuqKhNCOHQQ34EBWVySEdmyhKkHccmpVYnVFQmirh6oE\nUIyVFQmhHZsIbsBBrKxICO3YRVWCuOW0qsTKioTQVhtVCaCIMX8ZIyLmKxJCO/YR3IADbD64Weq+\nqTNdkRDa8YGqBHHLKVWJVRUJoR07qEoAh7OiIiG04wvBDdjIioqE0I4/VCWIW3ZXJVZUJIR2bKIq\nARzKbEVCaMcvghuwgdmKhNCOb1QliFt2VSVmKxJCO/ZRlQAOY6YiIbQhQnADUWWmIiG04UdVgrgV\n7arETEVCaMeXiFYls2bNqhgwYMA3eXl5O80cB4gH4VYkhDY6MhXc999//9LKysoSq4YBYlW4FQmh\njc6YCu7x48d/cNlll1nzKaZAjPL6vKIv06Vvcl+ZljMt5N8jtBGMK9JPUFZW1v61ruui63qknxJw\nlHAqEkI7vng8HvF4PCE/3vSbkwcPHswsLS1dt3PnzrwLDs6bk3CwaLw5ufngZtGX6bLqzlUhr7YJ\nbbCPG7BJOBUJoY1QENxAhPS0IiG0ESpTwX333XevvP766z/67LPPRmRkZNQvXbr0fqsGA1TW010k\nhDZ6ghNwELci1XH39EQbQhsd0XEDUdaTioTQRjgIbsBCPalICG2Ei6oEccvqqqQnFQmhja5QlQBR\nEmpFQmjDLIIbsECoFQmhDStQlSBuWVWVhFqRENoIVXdVScSvVQLEuq4qkqamJnnzzTflox8+kqy7\nsghtWIKqBDChs4qkqalJVqxYIUVFRTJgwABZvX+1ZN2VJXv/tpfQhiVYcQNhCrwWSfGgYlmxYoVU\nVFTIRx99JElJSdLc3Cwlc0vkxtk3yqbFm+TOEXfaPTJiBMENhMn9H24REbnm3Wsk7X+mtYe1iEhr\na6uUzC2RkrklUvlkpVT/72pZcXSFneMihhDcQBgWv75Ydh7bKclvJsv7Ne+LyLmw9gsM7conK6Wo\nqEguvfRSu8ZFjKHjBnrI6/PKQzsfksSziSK7L7y/Y2inpqbKrFmzoj8oYhbBDfSQfxfJ0TlH5Zpr\nrpHk5OT2+zqGtsi5lXhpaaktsyI2EdxADwTuIunXp59s2rSpPbw7C20RkRtuuEH69Olj49SINQQ3\nlLG9ZbusO7lOvmj9QtqMtqg/f2efaHPxxRfLpk2bRP+N3mloU5MgEjhzEsrY1bJLNp3eJL2kl3jF\nK1e6rpSc3jlyZa8rxaX1/H32np456f4Pt9R9Uyct81vOO6194TsL5aJrL5LKJyvF86xHWlpa2u9L\nSkqSo0ePsuJGj3DmJGLGsKRh4jntkVY5t3vjy7YvpaGtwZIQ706wa5H4Q/v0ltOy+tHVcmP1jbJj\nx4728KYmQSSw4oZS/nbib/K19+tO70uSpB6FeKgr7mDXIgkM7YdvflhERH744Qe58cZz4e1yueTF\nF1+UmTNn9vCfEvGuuxU3wQ2l7GrZJe+ffl/OytkuH+cP8VHJo+T6i67v9DGhBndnFUlnoe3nD++a\nmho5fvw4K270GNfjRkwZljRMfOLr9nH+OqV/Qn9Tz9dZRdJVaIuce8Oyurpa3n33XUIbEcGKG8rp\nqi7xc4lLbkq5Sa7ufXXQx3S34u6sIukutAErsOJGzMlJypFe0ivo/aGEdig6Xq6V0IZTENxQTnd1\niRWh3bEiIbThJAQ3lJOckCxpiWlB7//vlv82dfyOJ9oQ2nAaghtK6liXuMQlJSklcnvq7fKt71t5\ntenVsI8dWJEQ2nAightKCqxLAjvtwb0GmwrvwIpkcdViQhuORHBDSf66RBPtgk473PAOrEg+/+pz\nQhuOxXZAKOvI2SNyxjgjQ5KGdHr/obOHZE3zGrk84XKZ2efCsxc7bgf0n2izYOwCufjaiwlt2Ibt\ngIhZV/S6Imhoi/Rs5e2vSB4a+xChDccjuBHTQglvf0Vyy9hbZPC1gwltOJ7p4K6srCzJysraO3z4\n8P1PPvnkXCuGAqzUXXiP+csYKSkskZuuvYnQhhJMBbfX60381a9+9XxlZWXJ7t27c1auXHn3nj17\nsq0aDrBKsPDefHCzDMwcKCWFJYQ2lGEquLdu3Tp22LBhn2dmZh7s1avX2enTp//X2rVrf27VcICV\nOgvvhXsXEtpQjqkrzh8+fHhQRkZGvf/79PT0ho8//rgw8DGaFvSNUcB2lTdXSqWc+6ixeTLP5mmA\n0JgKbk3Tut3rx3ZAOFH92XoZnDRYbn/hdnn9wdftHgc4T3cLXlNVyaBBgw7X19dn+L+vr6/PSE9P\nbzBzTCAaMnqde9mu+bc1kpeXZ/M0QM+YCu4xY8Zs279///CDBw9mtra2Jv31r3+969Zbb33TquGA\nSHvvvfdk165dhDeUYiq4XS5X2/PPP/+rSZMmvZuTk7P7rrvu+mt2dvYeq4YDIm3ChAmEN5TDKe+I\nW4GnvG/cuFFuuukmyc3NlZ07d9o8GeIdp7wDIWDlDZUQ3MCPCG+oguAGAhDeUAHBDXRAeMPpCG6g\nE4Q3nIzgBoIgvOFUBDfQBcIbTkRwA90gvOE0BDcQAsIbTkJwAyEivOEUBDfQA6GG96FDh+TPf/5z\nFCdDPOFaJYhbgdcq6amurm1y6NAhKSwslGPHjsmhQ4fkiiuusGJcxBGuVQJEQLCVtz+0jx49KklJ\nSbJ69Wobp0SsYsWNuGVmxe0XuPJ+++2320Pb5/OJiEh+fr7U1dVZMS7iSHcrboIbccuK4Bb5/+Et\nIpKQkNAe2iIivXv3li+//JK6BD1CVQJE2PDhw8XlcommaeeFtsi5IKcugdUIbsAEf6ft8/k6Xb2f\nPn1aKioqbJgMsYzgBsIU+EZkx5V2oL1798qRI0eiOBliHcENhOHIkSMyduzYbkNbhLoE1iO4gTA0\nNjZKcnKyJCcnS1JSUpePpS6B1dhVgrhlxa6S3bt3y8qVK2X58uVy/PhxaWtrk9bW1gsex+4S9AS7\nSoAIysnJkccff1y++uor2bZtm8ydO1cGDx4sKSkp563EqUtgJVbciFtW7ePuzJ49e2TlypWybNky\nOX78uJw5c0Zyc3M5GQch4QQcIIhIBncgf4jv2LFD3njjjYg/H9RHcANBRCu4gZ6i4waAGENwA4Bi\nCG4AUAzBDQCKIbgBQDEENwAoJuzgXrVq1Z0jR478NDEx0VtTUzPKyqEAAMGFHdx5eXk716xZc/tP\nf/rT960cCADQNVe4v5iVlbXXykEAAKEJO7hDVVZW1v61ruui63qknxIAlOLxeMTj8YT8+C5PeS8u\nLq5qbGwc2PHn5eXlj5SWlq4TESkqKqp+5plnfjdq1KiaCw7OKe9wME55h1N1d8p7lyvuqqqqYutH\nAgCYYcl2wK7+ywAAsFbYwb1mzZrbMzIy6rds2XLtlClT3r755pvfsXIwAEDnuKwr4hYdN5yKy7oC\nQIwhuAFAMQQ3ACiG4AYAxRDcAKAYghsAFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACg\nGIIbABRDcAOAYghuAFAMwQ0AiiG4AUAxBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIoh\nuAFAMQQ3ACiG4AYAxRDcAKAYghsAFBN2cM+ZM2dRdnb2nvz8/O133HHH601NTX2sHAwA0Lmwg3vi\nxIkbPv3005Hbt2/PHzFixGdPPPHEPCsHAwB0LuzgLi4urkpISPCJiBQWFn7c0NCQbt1YAIBgXFYc\npKKiYtbdd9+9srP7ysrK2r/WdV10XbfiKQEgZng8HvF4PCE/XjMMI+idxcXFVY2NjQM7/ry8vPyR\n0tLSdSIiCxYsmF9TUzPqtddem3rBwTXN6Or4gJ00TRNen3CiH1+bWtD7zbxwX3nllX996aWXfrlx\n48YJycnJLZ08OcENxyK44VTdBXfYVUllZWXJokWL5mzevPlnnYU2ACAywl5xDx8+fH9ra2tSv379\nvhMRue666/7xwgsv/Nt5B2fFDQdjxQ2nimhVEsKTE9xwLIIbTtVdcHPmJAAohuAGAMUQ3ACgGIIb\nABRDcAOAYghuAFAMwQ0AiiG4AUAxBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIohuAFA\nMQQ3ACiG4AYAxRDcAKAYghsAFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACgGIIbABRD\ncAOAYghuAFBM2MH96KOPPp6fn7+9oKCgbsKECRvr6+szrBwMANA5zTCMsH7x5MmTl1xyySUnRUSe\ne+65X2/fvj3/5ZdffuC8g2uaEe7xgUjTNE14fcKJfnxtasHuD3vF7Q9tEZHm5ubU/v37Hw/3WACA\n0LnM/PL8+fMXrFix4p6UlJRTW7ZsudaqoQAAwXVZlRQXF1c1NjYO7Pjz8vLyR0pLS9f5v1+4cOHD\n+/btu3rp0qX3n3dwTTMee+yx9u91XRdd1y0ZHDCLqgRO4fF4xOPxtH//pz/9qcuqJOyOO9ChQ4cG\nT548ef2uXbtyzzs4HTccjOCGU0Ws496/f/9w/9dr1679udvtrg33WACA0IW94p42bdrqffv2XZ2Y\nmOgdOnToFy+++OKDaWlpR887OCtuOBgrbjhVdytuS6qSLp6c4IZjEdxwqohVJQAAexDcAKAYghsA\nFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACgGIIbABRDcAOAYghuAFAMwQ0AiiG4AUAx\nBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIohuAFAMQQ3ACiG4AYAxRDcAKAYghsAFENw\nA4BiCG4AUAzBDQCKIbgBQDGmg/uZZ575XUJCgu+7777rZ8VAAICumQru+vr6jKqqquIrr7zyK6sG\nAgB0zVRwP/TQQ39+6qmn/mDVMACA7rnC/cW1a9f+PD09veGaa67Z0dXjysrK2r/WdV10XQ/3KQEg\nJnk8HvF4PCE/XjMMI+idxcXFVY2NjQM7/nzBggXzy8vLH9mwYcPESy+99MSQIUMObNu2bczll1/+\n7XkH1zSjq+MDdtI0TXh9wol+fG1qQe8P54W7a9eu3AkTJmxMSUk5JSLS0NCQPmjQoMNbt24dm5aW\ndjTgyQluOBbBDaeKSHB3NGTIkAOffPLJ6H79+n3X4ckJbjgWwQ2n6i64LdnHrWkar34AiBJLVtxB\nD86KGw7GihtOFZUVt1k9eTc12pw8m4iz53PybE7n9L+dk+eLh9kI7m44eTYRZ8/n5Nmczul/OyfP\nFw+zOSK4AQChI7gBQDERf3MyYgcHgBgW8X3cAIDooSoBAMUQ3ACgGMcFtxM/mOHRRx99PD8/f3tB\nQUHdhAkTNtbX12fYPVOgOXPmLMrOzt6Tn5+//Y477ni9qampj90z+a1aterOkSNHfpqYmOitqakZ\nZfc8fpWVlSVZWVl7hw8fvv/JJ5+ca/c8frNmzaoYMGDAN3l5eTvtnqUz9fX1GUVFRdUjR478NDc3\nd9eSJUv+3e6Z/FpaWpILCws/LigoqMvJydk9b968J+yeqSOv15vodrtrS0tL15k6kGEYjrkdOnQo\nY9KkSZWZmZkHvv322352z+O/nThx4hL/10uWLPn1L37xi5ftninwtmHDhmKv15tgGIbMnTt34dy5\ncxfaPZP/tmfPnqx9+/aN0HW9+pNPPhll9zyGYUhbW1vi0KFDPz9w4EBma2trr/z8/Lrdu3dn2z2X\nYRjy/vvvj6+pqXHn5ubutHuWzm5ff/31wNra2gLDMOTkyZOpI0aM2OeUv51hGPLDDz+kGIYhZ8+e\ndRUWFm754IMPxtk9U+DtmWeeeWjGjBn/t7S09E0zx3HUitupH8xwySWXnPR/3dzcnNq/f//jds7T\nUXFxcVVCQoJPRKSwsPDjhoaGdLtn8svKyto7YsSIz+yeI9DWrVvHDhs27PPMzMyDvXr1Ojt9+vT/\nWrt27c/tnktEZPz48R9cdtll39s9RzADBw5sLCgoqBMRSU1Nbc7Ozt5z5MiRK+yey89/xdLW1tYk\nr9eb2PHCd3ZqaGhIX79+/eQHHnjgZaOLHSOhcExwh/rBDHaZP3/+gsGDBx9atmzZfQ8//PBCu+cJ\npqKiYtbkyZPX2z2Hkx0+fHhQRkZGvf/79PT0hsOHDw+ycyYVHTx4MLO2ttZdWFj4sd2z+Pl8voSC\ngoK6AQMGfFNUVFSdk5Oz2+6Z/GbPnr140aJFc/yLLDPC/gSccHT1wQxPPPHEvA0bNkz0/8zsf5Gs\nmq28vPyR0tLSdQsWLJi/YMGC+QsXLnx49uzZi5cuXXq/k+YTOfd3TEpKap0xY8Z/Om02J+H8AvOa\nm5tTp02btvrZZ5/9TWpqarPd8/glJCT46urqCpqamvpMmjTpXY/Ho+u67rF7rrfeeuuWtLS0o263\nu9bj8ehmjxfV4K6qqiru7Oe7du3KPXDgwJD8/PztIuf+l2L06NGfdPxgBjtm62jGjBn/aceKtrv5\nXnnllX9dv3795I0bN06I1kx+of7tnGLQoEGHA99grq+vz0hPT2+wcyaVnD17ttfUqVNfmzlz5qu3\n3XbbG3bP05k+ffo0TZky5e1t27aNcUJwf/TRR9e/+eabt65fv35yS0tL8okTJy699957ly9fvvze\nsA5od1nf2c1pb05+9tlnw/1fL1my5NczZ85cYfdMgbd33nmnJCcn59Njx471t3uWYDdd16u3bds2\n2u45DOPcG1dXXXXVFwcOHMg8c+ZMkpPenDQMQw4cOJDp1DcnfT6fds899yz/7W9/u9juWTrejh07\n1v/777/vaxiGnDp16qLx48e//957702we66ON4/H87NbbrllnZlj2P4P0dltyJAhXzopuKdOnbo6\nNzd3Z35+ft0dd9zx2jfffJNm90yBt2HDhu0fPHjwVwUFBbUFBQW1Dz744At2z+S/vf7667enp6fX\nJycnnx4wYEBjSUnJO3bPZBiGrF+//uYRI0bsGzp06Ofl5eXz7J7Hf5s+ffrKn/zkJ0eSkpLOpKen\n11dUVNxv90yBtw8++GCcpmm+/Pz8Ov/r7Z133imxey7DMGTHjh15bre7Jj8/vy4vL2/HU089Ncfu\nmTq7eTyen5ndVcIp7wCgGMfsKgEAhIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIr5f29G1cu1\n7ckSAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(1/sqrt(2)*vector(1,1), 1/sqrt(2)*vector(1,-1), vector(2,3))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}2\\\\3\\end{matrix}\\right]$, and its projection on the basis: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\1\\end{matrix}\\right],\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}5\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHcBJREFUeJzt3X10VPW97/HvToYQYxREVqCSYJAHk5CYDHCID9DuiIEI\nxqrgElmoR2r/8Nz2tNhSROo1XV4iipYruvTc6goC3sNpQRFRjETIoNYiB5PwIA+igiRgBNQGIoSQ\nmX3/wMkdQiaZzN4ze/9m3q+1Zq0kM9nzNWv8+PMzv71HMwxDAADqSLB7AABAzxDcAKAYghsAFENw\nA4BiCG4AUIwrkgfXNI0tKwAQBsMwtGD3RXzFbRhGt7fHHnsspMfZcXPybE6fz8mzGYYR8uuTv51a\n88XCbN2hKgEAxRDcAKAYRwS3rut2jxCUk2cTcfZ8Tp7N6Zz+t3PyfPEwmxZKnxL2wTXNiOTxATM0\nTQupTwSi7cfXZuTenPR6vYlut7u2tLR0ndljAQC6Zzq4n3322d/k5OTsZusfAESHqeBuaGhIX79+\n/eQHHnjg5a6W9QAA65gK7tmzZy9etGjRnISEBJ9VAwEAuhb2mZNvvfXWLWlpaUfdbnetx+PRgz2u\nrKys/Wtd1x39ji8A2MHj8YjH4wn58WHvKnnkkUfKV6xYcY/L5WpraWlJPnHixKVTp059bfny5fe2\nH5xdJXAwdpXAqbrbVWLJdsDNmzf/7Omnn/79unXrSjs8OcENxyK44VQR3w4Y8ET8GwAAUcAJOIhb\nrLjhVFFbcQMAooPgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIohuAFAMQQ3ACiG4AYAxRDcAKAY\nghsAFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACgGIIbABRDcAOAYghuAFAMwQ0AiiG4\nAUAxBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIoxFdwtLS3JhYWFHxcUFNTl5OTsnjdv\n3hNWDQYA6JxmGIapA5w6dSolJSXlVFtbm2vcuHEfPv30078fN27chyIimqYZZo8PRIqmacLrE070\n42tTC3a/6aokJSXllIhIa2trktfrTezXr993Zo8JAAjOZfYAPp8vYdSoUTVffPHF0AcffPDFnJyc\n3YH3l5WVtX+t67roum72KQHYqKmlSaq+rJJpOdPsHiVmeDwe8Xg8IT/edFXi19TU1GfSpEnvLly4\n8GFd1z0iVCVwNqqSnvH6vPJSzUvyh6o/yBnvGWmZ3yKaFvT/5mFCxKsSvz59+jRNmTLl7W3bto2x\n6pgAnKH6QLVc/fzV8vsNv5eTrScl7eI0QttGpoL7+PHj/f/5z3/2FRE5ffr0RVVVVcVut7vWmtEA\n2O3z7z6XiSsmyi0rb5Evvv9Cfjj7g4iIXNnnSpsni2+mOu6vv/76J/fdd98yn8+X4PP5Eu65554V\nEyZM2GjVcADs0dTSJI95HpO/fPIXafW2itfwnnf/1ZdfbdNkEDEZ3Hl5eTtrampGWTUMAHv5e+y5\n782VVm+rtLS1XPAYV4JLru5PcNvJ9K4SALGh+kC1/HLdL6WxubG9EunMRa6LZEjfIVGcDB0R3ABk\nS8MWuXH5jSE9VtM0yeybGdmB0CWuVQJACgcVSsWtFZKalCquhK7Xc2fazhDcNiO4AYimaXK/+37Z\n+z/2yg0ZN8jFvS4O+lif4ZP+Kf2jOB06IrgBtBt06SCpvq9anrv5ORER0eTCvdoDUgewh9tmBDeA\n82iaJldddpWIiAxMHXjB6ps93PYjuAGcx+vzir5Ml77JfeXwQ4fluZufO6/7Zg+3/QhuAOf5l5f+\nRUREGn/XeEH3rYnGHm4HYDsggHabD26W2sZaWXXnKunt6t3+c3/3vXr3ahl9xWgbJ4SIhVcH7PTg\nXB0QDsbVAc/n9XnF9bhL+ib3le/nfm/3OHEtalcHBKC2wIoEzkZwAwhakcCZqEoQt6hKzqEicR6q\nEgBdoiJRD7tKgDhmZ0ViGIYc8x6Tfa37JCUhRUYns1slVAQ3EKcCT7SJ1gf/Bob13ta90mq0ile8\n4u7tjsrzxwqCG4hT0apIgoW1IefeX3CJS7KSsiI6Q6whuIE4FOmKpLuwDpSkJUn/RK422BMENxBn\nIl2R7DmzRz48/WGXYe2niSZZSVlcbbCHCG4gzkS6Iumt9ZYWo0V84uv2sYmSSE0SBrYDAnEkGrtI\nrkq6SkpSSsQVwrqQmiQ8BDcQJ6K5i2R47+EyMWVil+FNTRI+ghuIE9E+0cYf3sFQk4SP4AbigF0n\n2hz3Hg96HzVJ+AhuIMbZcaKNiMg/Tv1Dtp7ZKmN7j5XJKZPPq02oScxhVwkQ4+y4FklgaF+Xcl37\nzzec2iBt0kZNYhIrbiCG2VGRBAttf+edIAnUJCZxWVfErVi/rKsdl2sNFtqBvmz9Us4YZyS7d3ZU\nZlJRd5d1pSoBYlS0K5JQQlvk3D5vmENVAsSgaFckoYY2rGEquOvr6zOKioqqR44c+Wlubu6uJUuW\n/LtVgwEIT7R3kRDa0Weq425sbBzY2Ng4sKCgoK65uTl19OjRn7zxxhu3ZWdn7xGh44azxWrHPer/\njJLaxlppmd8S8dU2oR0ZEf3osoEDBzYWFBTUiYikpqY2Z2dn7zly5MgVZo4JIHzRrEgIbftY9ubk\nwYMHM2tra92FhYUfB/68rKys/Wtd10XXdaueEkCAaFYkhLa1PB6PeDyekB9vyXbA5ubmVF3XPX/8\n4x//12233fZG+8GpSuBgsVaVRKsiIbQjL+Kf8n727NleU6dOfW3mzJmvBoY2gOiJVkVCaDuDqRW3\nYRjafffdt+zyyy//dvHixbMvODgrbjhYrKy4o3WiDaEdPRFdcf/973+/4dVXX51ZXV1d5Ha7a91u\nd21lZWWJmWMC6JlonGhDaDuLqTcnx40b96HP5+MkHsAm0ahICG3n4VoliFuqVyXRqEgIbXtE/M1J\nAPaIdEVCaDsXwQ0oKNIVCaHtbFQliFuqViWRrkgIbftRlQAxJpIVCaGtBoIbUEgkKxJCWx1UJYhb\nqlUlkaxICG1noSoBYkSkKhJCWz0EN6CASFUkhLaaqEoQt1SpSiJVkRDazkVVAiguEhUJoa02ghtw\nsEhUJIS2+qhKELecXpVEoiIhtNVAVQIoyuqKhNCOHQQ34EBWVySEdmyhKkHccmpVYnVFQmirh6oE\nUIyVFQmhHZsIbsBBrKxICO3YRVWCuOW0qsTKioTQVhtVCaCIMX8ZIyLmKxJCO/YR3IADbD64Weq+\nqTNdkRDa8YGqBHHLKVWJVRUJoR07qEoAh7OiIiG04wvBDdjIioqE0I4/VCWIW3ZXJVZUJIR2bKIq\nARzKbEVCaMcvghuwgdmKhNCOb1QliFt2VSVmKxJCO/ZRlQAOY6YiIbQhQnADUWWmIiG04UdVgrgV\n7arETEVCaMeXiFYls2bNqhgwYMA3eXl5O80cB4gH4VYkhDY6MhXc999//9LKysoSq4YBYlW4FQmh\njc6YCu7x48d/cNlll1nzKaZAjPL6vKIv06Vvcl+ZljMt5N8jtBGMK9JPUFZW1v61ruui63qknxJw\nlHAqEkI7vng8HvF4PCE/3vSbkwcPHswsLS1dt3PnzrwLDs6bk3CwaLw5ufngZtGX6bLqzlUhr7YJ\nbbCPG7BJOBUJoY1QENxAhPS0IiG0ESpTwX333XevvP766z/67LPPRmRkZNQvXbr0fqsGA1TW010k\nhDZ6ghNwELci1XH39EQbQhsd0XEDUdaTioTQRjgIbsBCPalICG2Ei6oEccvqqqQnFQmhja5QlQBR\nEmpFQmjDLIIbsECoFQmhDStQlSBuWVWVhFqRENoIVXdVScSvVQLEuq4qkqamJnnzzTflox8+kqy7\nsghtWIKqBDChs4qkqalJVqxYIUVFRTJgwABZvX+1ZN2VJXv/tpfQhiVYcQNhCrwWSfGgYlmxYoVU\nVFTIRx99JElJSdLc3Cwlc0vkxtk3yqbFm+TOEXfaPTJiBMENhMn9H24REbnm3Wsk7X+mtYe1iEhr\na6uUzC2RkrklUvlkpVT/72pZcXSFneMihhDcQBgWv75Ydh7bKclvJsv7Ne+LyLmw9gsM7conK6Wo\nqEguvfRSu8ZFjKHjBnrI6/PKQzsfksSziSK7L7y/Y2inpqbKrFmzoj8oYhbBDfSQfxfJ0TlH5Zpr\nrpHk5OT2+zqGtsi5lXhpaaktsyI2EdxADwTuIunXp59s2rSpPbw7C20RkRtuuEH69Olj49SINQQ3\nlLG9ZbusO7lOvmj9QtqMtqg/f2efaHPxxRfLpk2bRP+N3mloU5MgEjhzEsrY1bJLNp3eJL2kl3jF\nK1e6rpSc3jlyZa8rxaX1/H32np456f4Pt9R9Uyct81vOO6194TsL5aJrL5LKJyvF86xHWlpa2u9L\nSkqSo0ePsuJGj3DmJGLGsKRh4jntkVY5t3vjy7YvpaGtwZIQ706wa5H4Q/v0ltOy+tHVcmP1jbJj\nx4728KYmQSSw4oZS/nbib/K19+tO70uSpB6FeKgr7mDXIgkM7YdvflhERH744Qe58cZz4e1yueTF\nF1+UmTNn9vCfEvGuuxU3wQ2l7GrZJe+ffl/OytkuH+cP8VHJo+T6i67v9DGhBndnFUlnoe3nD++a\nmho5fvw4K270GNfjRkwZljRMfOLr9nH+OqV/Qn9Tz9dZRdJVaIuce8Oyurpa3n33XUIbEcGKG8rp\nqi7xc4lLbkq5Sa7ufXXQx3S34u6sIukutAErsOJGzMlJypFe0ivo/aGEdig6Xq6V0IZTENxQTnd1\niRWh3bEiIbThJAQ3lJOckCxpiWlB7//vlv82dfyOJ9oQ2nAaghtK6liXuMQlJSklcnvq7fKt71t5\ntenVsI8dWJEQ2nAightKCqxLAjvtwb0GmwrvwIpkcdViQhuORHBDSf66RBPtgk473PAOrEg+/+pz\nQhuOxXZAKOvI2SNyxjgjQ5KGdHr/obOHZE3zGrk84XKZ2efCsxc7bgf0n2izYOwCufjaiwlt2Ibt\ngIhZV/S6Imhoi/Rs5e2vSB4a+xChDccjuBHTQglvf0Vyy9hbZPC1gwltOJ7p4K6srCzJysraO3z4\n8P1PPvnkXCuGAqzUXXiP+csYKSkskZuuvYnQhhJMBbfX60381a9+9XxlZWXJ7t27c1auXHn3nj17\nsq0aDrBKsPDefHCzDMwcKCWFJYQ2lGEquLdu3Tp22LBhn2dmZh7s1avX2enTp//X2rVrf27VcICV\nOgvvhXsXEtpQjqkrzh8+fHhQRkZGvf/79PT0ho8//rgw8DGaFvSNUcB2lTdXSqWc+6ixeTLP5mmA\n0JgKbk3Tut3rx3ZAOFH92XoZnDRYbn/hdnn9wdftHgc4T3cLXlNVyaBBgw7X19dn+L+vr6/PSE9P\nbzBzTCAaMnqde9mu+bc1kpeXZ/M0QM+YCu4xY8Zs279///CDBw9mtra2Jv31r3+969Zbb33TquGA\nSHvvvfdk165dhDeUYiq4XS5X2/PPP/+rSZMmvZuTk7P7rrvu+mt2dvYeq4YDIm3ChAmEN5TDKe+I\nW4GnvG/cuFFuuukmyc3NlZ07d9o8GeIdp7wDIWDlDZUQ3MCPCG+oguAGAhDeUAHBDXRAeMPpCG6g\nE4Q3nIzgBoIgvOFUBDfQBcIbTkRwA90gvOE0BDcQAsIbTkJwAyEivOEUBDfQA6GG96FDh+TPf/5z\nFCdDPOFaJYhbgdcq6amurm1y6NAhKSwslGPHjsmhQ4fkiiuusGJcxBGuVQJEQLCVtz+0jx49KklJ\nSbJ69Wobp0SsYsWNuGVmxe0XuPJ+++2320Pb5/OJiEh+fr7U1dVZMS7iSHcrboIbccuK4Bb5/+Et\nIpKQkNAe2iIivXv3li+//JK6BD1CVQJE2PDhw8XlcommaeeFtsi5IKcugdUIbsAEf6ft8/k6Xb2f\nPn1aKioqbJgMsYzgBsIU+EZkx5V2oL1798qRI0eiOBliHcENhOHIkSMyduzYbkNbhLoE1iO4gTA0\nNjZKcnKyJCcnS1JSUpePpS6B1dhVgrhlxa6S3bt3y8qVK2X58uVy/PhxaWtrk9bW1gsex+4S9AS7\nSoAIysnJkccff1y++uor2bZtm8ydO1cGDx4sKSkp563EqUtgJVbciFtW7ePuzJ49e2TlypWybNky\nOX78uJw5c0Zyc3M5GQch4QQcIIhIBncgf4jv2LFD3njjjYg/H9RHcANBRCu4gZ6i4waAGENwA4Bi\nCG4AUAzBDQCKIbgBQDEENwAoJuzgXrVq1Z0jR478NDEx0VtTUzPKyqEAAMGFHdx5eXk716xZc/tP\nf/rT960cCADQNVe4v5iVlbXXykEAAKEJO7hDVVZW1v61ruui63qknxIAlOLxeMTj8YT8+C5PeS8u\nLq5qbGwc2PHn5eXlj5SWlq4TESkqKqp+5plnfjdq1KiaCw7OKe9wME55h1N1d8p7lyvuqqqqYutH\nAgCYYcl2wK7+ywAAsFbYwb1mzZrbMzIy6rds2XLtlClT3r755pvfsXIwAEDnuKwr4hYdN5yKy7oC\nQIwhuAFAMQQ3ACiG4AYAxRDcAKAYghsAFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACg\nGIIbABRDcAOAYghuAFAMwQ0AiiG4AUAxBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIoh\nuAFAMQQ3ACiG4AYAxRDcAKAYghsAFBN2cM+ZM2dRdnb2nvz8/O133HHH601NTX2sHAwA0Lmwg3vi\nxIkbPv3005Hbt2/PHzFixGdPPPHEPCsHAwB0LuzgLi4urkpISPCJiBQWFn7c0NCQbt1YAIBgXFYc\npKKiYtbdd9+9srP7ysrK2r/WdV10XbfiKQEgZng8HvF4PCE/XjMMI+idxcXFVY2NjQM7/ry8vPyR\n0tLSdSIiCxYsmF9TUzPqtddem3rBwTXN6Or4gJ00TRNen3CiH1+bWtD7zbxwX3nllX996aWXfrlx\n48YJycnJLZ08OcENxyK44VTdBXfYVUllZWXJokWL5mzevPlnnYU2ACAywl5xDx8+fH9ra2tSv379\nvhMRue666/7xwgsv/Nt5B2fFDQdjxQ2nimhVEsKTE9xwLIIbTtVdcHPmJAAohuAGAMUQ3ACgGIIb\nABRDcAOAYghuAFAMwQ0AiiG4AUAxBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIohuAFA\nMQQ3ACiG4AYAxRDcAKAYghsAFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACgGIIbABRD\ncAOAYghuAFBM2MH96KOPPp6fn7+9oKCgbsKECRvr6+szrBwMANA5zTCMsH7x5MmTl1xyySUnRUSe\ne+65X2/fvj3/5ZdffuC8g2uaEe7xgUjTNE14fcKJfnxtasHuD3vF7Q9tEZHm5ubU/v37Hw/3WACA\n0LnM/PL8+fMXrFix4p6UlJRTW7ZsudaqoQAAwXVZlRQXF1c1NjYO7Pjz8vLyR0pLS9f5v1+4cOHD\n+/btu3rp0qX3n3dwTTMee+yx9u91XRdd1y0ZHDCLqgRO4fF4xOPxtH//pz/9qcuqJOyOO9ChQ4cG\nT548ef2uXbtyzzs4HTccjOCGU0Ws496/f/9w/9dr1679udvtrg33WACA0IW94p42bdrqffv2XZ2Y\nmOgdOnToFy+++OKDaWlpR887OCtuOBgrbjhVdytuS6qSLp6c4IZjEdxwqohVJQAAexDcAKAYghsA\nFENwA4BiCG4AUAzBDQCKIbgBQDEENwAohuAGAMUQ3ACgGIIbABRDcAOAYghuAFAMwQ0AiiG4AUAx\nBDcAKIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIohuAFAMQQ3ACiG4AYAxRDcAKAYghsAFENw\nA4BiCG4AUAzBDQCKIbgBQDGmg/uZZ575XUJCgu+7777rZ8VAAICumQru+vr6jKqqquIrr7zyK6sG\nAgB0zVRwP/TQQ39+6qmn/mDVMACA7rnC/cW1a9f+PD09veGaa67Z0dXjysrK2r/WdV10XQ/3KQEg\nJnk8HvF4PCE/XjMMI+idxcXFVY2NjQM7/nzBggXzy8vLH9mwYcPESy+99MSQIUMObNu2bczll1/+\n7XkH1zSjq+MDdtI0TXh9wol+fG1qQe8P54W7a9eu3AkTJmxMSUk5JSLS0NCQPmjQoMNbt24dm5aW\ndjTgyQluOBbBDaeKSHB3NGTIkAOffPLJ6H79+n3X4ckJbjgWwQ2n6i64LdnHrWkar34AiBJLVtxB\nD86KGw7GihtOFZUVt1k9eTc12pw8m4iz53PybE7n9L+dk+eLh9kI7m44eTYRZ8/n5Nmczul/OyfP\nFw+zOSK4AQChI7gBQDERf3MyYgcHgBgW8X3cAIDooSoBAMUQ3ACgGMcFtxM/mOHRRx99PD8/f3tB\nQUHdhAkTNtbX12fYPVOgOXPmLMrOzt6Tn5+//Y477ni9qampj90z+a1aterOkSNHfpqYmOitqakZ\nZfc8fpWVlSVZWVl7hw8fvv/JJ5+ca/c8frNmzaoYMGDAN3l5eTvtnqUz9fX1GUVFRdUjR478NDc3\nd9eSJUv+3e6Z/FpaWpILCws/LigoqMvJydk9b968J+yeqSOv15vodrtrS0tL15k6kGEYjrkdOnQo\nY9KkSZWZmZkHvv322352z+O/nThx4hL/10uWLPn1L37xi5ftninwtmHDhmKv15tgGIbMnTt34dy5\ncxfaPZP/tmfPnqx9+/aN0HW9+pNPPhll9zyGYUhbW1vi0KFDPz9w4EBma2trr/z8/Lrdu3dn2z2X\nYRjy/vvvj6+pqXHn5ubutHuWzm5ff/31wNra2gLDMOTkyZOpI0aM2OeUv51hGPLDDz+kGIYhZ8+e\ndRUWFm754IMPxtk9U+DtmWeeeWjGjBn/t7S09E0zx3HUitupH8xwySWXnPR/3dzcnNq/f//jds7T\nUXFxcVVCQoJPRKSwsPDjhoaGdLtn8svKyto7YsSIz+yeI9DWrVvHDhs27PPMzMyDvXr1Ojt9+vT/\nWrt27c/tnktEZPz48R9cdtll39s9RzADBw5sLCgoqBMRSU1Nbc7Ozt5z5MiRK+yey89/xdLW1tYk\nr9eb2PHCd3ZqaGhIX79+/eQHHnjgZaOLHSOhcExwh/rBDHaZP3/+gsGDBx9atmzZfQ8//PBCu+cJ\npqKiYtbkyZPX2z2Hkx0+fHhQRkZGvf/79PT0hsOHDw+ycyYVHTx4MLO2ttZdWFj4sd2z+Pl8voSC\ngoK6AQMGfFNUVFSdk5Oz2+6Z/GbPnr140aJFc/yLLDPC/gSccHT1wQxPPPHEvA0bNkz0/8zsf5Gs\nmq28vPyR0tLSdQsWLJi/YMGC+QsXLnx49uzZi5cuXXq/k+YTOfd3TEpKap0xY8Z/Om02J+H8AvOa\nm5tTp02btvrZZ5/9TWpqarPd8/glJCT46urqCpqamvpMmjTpXY/Ho+u67rF7rrfeeuuWtLS0o263\nu9bj8ehmjxfV4K6qqiru7Oe7du3KPXDgwJD8/PztIuf+l2L06NGfdPxgBjtm62jGjBn/aceKtrv5\nXnnllX9dv3795I0bN06I1kx+of7tnGLQoEGHA99grq+vz0hPT2+wcyaVnD17ttfUqVNfmzlz5qu3\n3XbbG3bP05k+ffo0TZky5e1t27aNcUJwf/TRR9e/+eabt65fv35yS0tL8okTJy699957ly9fvvze\nsA5od1nf2c1pb05+9tlnw/1fL1my5NczZ85cYfdMgbd33nmnJCcn59Njx471t3uWYDdd16u3bds2\n2u45DOPcG1dXXXXVFwcOHMg8c+ZMkpPenDQMQw4cOJDp1DcnfT6fds899yz/7W9/u9juWTrejh07\n1v/777/vaxiGnDp16qLx48e//957702we66ON4/H87NbbrllnZlj2P4P0dltyJAhXzopuKdOnbo6\nNzd3Z35+ft0dd9zx2jfffJNm90yBt2HDhu0fPHjwVwUFBbUFBQW1Dz744At2z+S/vf7667enp6fX\nJycnnx4wYEBjSUnJO3bPZBiGrF+//uYRI0bsGzp06Ofl5eXz7J7Hf5s+ffrKn/zkJ0eSkpLOpKen\n11dUVNxv90yBtw8++GCcpmm+/Pz8Ov/r7Z133imxey7DMGTHjh15bre7Jj8/vy4vL2/HU089Ncfu\nmTq7eTyen5ndVcIp7wCgGMfsKgEAhIbgBgDFENwAoBiCGwAUQ3ADgGIIbgBQDMENAIr5f29G1cu1\n7ckSAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(vector(-1,0), vector(0,-1), vector(2,3))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}2\\\\3\\end{matrix}\\right]$, and its projection on the basis: $\\left[\\begin{matrix}-1\\\\0\\end{matrix}\\right],\\left[\\begin{matrix}0\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\left[\\begin{matrix}-2\\\\-3\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFpCAYAAABXkHk0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGERJREFUeJzt3X9wlPWdwPHPk03CGgIIg4ImwVhImoRksqG0UQ65zXAp\nKA1S0AqcHj9ynak3tqIngxStaZUYpR0jOjpTNGBlSi0ipkwxJTKsIHfAQRKIgBA9c4SflqKEQEKS\nzXN/1KUhPzab3WfzPN9n3y9nZ5bd5dnPMPHt109+oOm6LgAANUSZPQAAIHBEGwAUQrQBQCFEGwAU\nQrQBQCHR4by4pml8aQoABEHXda2nx8N+0tZ1fcBuzzzzzIC+X6TPrfLsA/2xyZ+5unObMbs/rEcA\nQCFEGwAUYqtou91us0cIiqpzi6g9u6pU/TNXdW4Ra82u9bU/CenimqaH8/pAsDRN63N3CJjlm49P\ncz4RCQAwDtEGAIUQbQBQCNEGAIUQbQBQCNEGAIUQbQBQCNEGAIUQbQBQCNEGAIUQbQBQCNEGAIUQ\nbQBQCNEGAIUQbQBQCNEGAIUQbQBQCNEGAIUQbQBQSEjRbmlpcebm5u51uVw1GRkZR5YvX/68UYMB\nALoL+S/2vXLlSlxcXNyV9vb26MmTJ3/861//+onJkyd/LMJf7Avr4i/2hZWF9S/2jYuLuyIi0tra\nGuv1eh0jRoy4EOo1AQA9iw71Ah0dHVETJkyo+vzzz8c+/PDDr2dkZBzp/HxRUdG1+263W9xud6hv\nCRjiYMtByXZmmz1GxKg6UyX7Tu2Tn0z8idmjWI7H4xGPxxPQa0Nej/hcvHhx2LRp0/5SUlLypNvt\n9oiwHoF1aZompRdK5f4h98ut0beaPY6tnW06K4//5XH54+E/yreGf0uO//S42SNZXljXIz7Dhg27\nOGPGjD/v379/olHXBMLhasfVa/c/vvKxiZPYW0t7izz70bMy9uWx8u6Rd8Wre+X24bebPZbyQor2\n+fPnR3799dc3iog0NzffUFlZmZ+Tk1NtzGhAeBy4euDa/b96/yqn20+bOI396LouGw9vlNteuk1K\ndpfIlfYr0tbRJiIi6SPTTZ5OfSHttM+cOXPLggUL3uro6Ijq6OiIeuihh96eOnXqdqOGA4x2teOq\nVLf841zRLu3y8ZWP5UdDf2TiVPZRdaZKfrzlx3Ls/DG53Hb5uuec0U5JGZFi0mT2EVK0s7Kyaquq\nqiYYNQwQbgeuHhBdrv88i++0zW47eL699fufvi/N7c09vmaQY5Ak35g8sIPZEN8RiYjhO2V7xXvd\n477TNvqv6966t2CLiHToHUTbAEQbEaOnU7YPu+3gbDqySX7h+cV1e+veNLc3y2033jZAk9kX0UZE\n6O2U7cNpOzjzs+bLhjkbZOigoRITFeP3tc5op8THxg/QZPZFtBER/J2yfTht95+maTI3c64cf+S4\nTL19qgyOGdzra2+Jv2UAJ7Mvog3b6+uU7cNpO3ij4kfJ1n/dKmsK1oiIiENzdHsNX6NtDKIN2wvk\nlO3DaTt4mqbJh//7oYiITLltisTFxF33PF+jbQyiDds7fPWwiIhEd/rHJ7rLP17xSu3VWrNGVdpn\nFz6TspoyeS7vOdn+b9vlzZlvXtt1D3IM4mu0DWLYzx7p8eL87BFYQEtHi7RK63WPDXMMk9ILpbJo\n2KJur79Bu0FiNP+fVEN32i///qMy9Gf+8e/8uaZzsvD9hVLxeYVsmbdFfpD6A7PGU4q/nz0S8k/5\nA6zOGeUUpzh7fG5o1NABnsaeCssLRUTkyye+vO5x367bU++RO5PuNGM02yHaAELSeS1y0+Cbuj2v\naZrk3Z5nwmT2xE4bQEhSXvn7rnrFlBUmTxIZiDaAoPW2FkH4EG0AQelrLYLwINoAgsJaxBxEG0C/\nsRYxD9EG0C+sRcxFtAH0C2sRcxFtAAFjLWI+og0gIKxFrIFoAwgIaxFrINoA+sRaxDqINgC/WItY\nC9EG4BdrEWsh2gB6xVrEeog2gB6xFrEmog2gR6xFrIloA+iGtYh1EW0A12EtYm1EG8B1WItYG9EG\ncA1rEesj2gBEhLWIKog2ABFhLaIKog2AtYhCiDYQ4ViLqIVoAxGOtYhaiDYQwViLqIdoAxGKtYia\nQop2Q0NDUl5e3o7x48cfzszM/GT16tU/M2owAOHFWkRN0aH85piYmLaXXnrpMZfLVdPU1BT/ne98\n50B+fn5lenr6UaMGBGA81iLqCumkPXr06LMul6tGRCQ+Pr4pPT396OnTp281ZjQA4cBaRG0hnbQ7\nq6+vT66urs7Jzc3d2/nxoqKia/fdbre43W6j3hJAEFiLWI/H4xGPxxPQazVd10N+w6ampni32+15\n6qmnnps1a9b71y6uaboR1weMpmmalF4olUeHP2r2KAOqsLxQymrK5MsnvuSUbWGapomu61pPz4X8\n1SNtbW0xc+bM2fTggw+u7xxsANbCWsQeQoq2rutaYWHhmxkZGUeWLFlSatRQAIzHWsQeQor27t27\n/2n9+vUP7tixIy8nJ6c6JyenuqKiYrpRwwEwBl8tYh8hfSJy8uTJH3d0dPANOoCFsRaxF4IL2Bxr\nEXsh2oCNsRaxH6IN2BRrEXsi2oBNsRaxJ6IN2BBrEfsi2oDNsBaxN6IN2AxrEXsj2oCNsBaxP6IN\n2ARrkchAtAGbYC0SGYg2YAOsRSIH0QYUx1okshBtQHGsRSIL0QYUxlok8hBtQFGsRSIT0QYUxVok\nMhFtQEGsRSIX0QYUw1okshFtQDGsRSIb0QYUwloERBtQBGsRiBBtQBmsRSBCtAElsBaBD9EGLI61\nCDoj2oDFsRZBZ0QbsDDWIuiKaAMWxVoEPSHagEWxFkFPiDZgQaxF0BuiDVgMaxH4Q7QBi2EtAn+I\nNmAhrEXQF6INWARrEQSCaAMWwVoEgSDagAWwFkGgiDZgMtYi6A+iDZiMtQj6g2gDJmItgv4KKdqL\nFy8uGzVq1LmsrKxaowYCIgVrEQQjpGgvWrRobUVFxXSjhgEiCWsRBCOkaN911127hg8f/pVRwwCR\ngrUIghUd7jcoKiq6dt/tdovb7Q73WwKWxloEXXk8HvF4PAG9VtN1PaQ3q6+vTy4oKNhSW1ub1e3i\nmqaHen0gHDRNk9ILpfLo8EcH/r1/qYmIiP4M/26gZ5qmia7rWk/P8dUjwABiLYJQEW1ggLAWgRFC\niva8efM2TJo06b+OHz+empSU1LB27dpFRg0G2A1fLQIjhPSJyA0bNswzahDAzliLwCisR4AwYy0C\nIxFtIMxYi8BIRBsII9YiMBrRBsKEtQjCgWgDYcJaBOFAtIEwYC2CcCHagMFYiyCciDZgMNYiCCei\nDRiItQjCjWgDBmEtgoFAtAGDsBbBQCDagAFYi2CgEG0gRKxFMJCINhAi1iIYSEQbCAFrEQw0og0E\nibUIzEC0gSCxFoEZiDYQBNYiMAvRBvqJtQjMRLSBfmItAjMRbaAfWIvAbEQbCBBrEVgB0QYCxFoE\nVkC0gQCwFoFVEG2gD6xFYCVEG+gDaxFYCdEG/GAtAqsh2kAvWIvAiog20AvWIrAiog30gLUIrIpo\nA12wFoGVEW2gC9YisDKiDXTCWgRWR7SBb7AWgQqINvAN1iJQAdHGgGhsbJRf/epXkpycLE1NTWaP\n0w1rkeC8e+ld2XZ5mzR6G80eJWJEmz0A7K2xsVFKS0tl1apV4vV6pb29XZqbmyU+Pt7s0a5hLRK8\nr7xfyen203K89bikxqbKHc47ZKhjqNlj2VpIJ+2KiorpaWlpn6akpNS98MILy4waCurznawTEhKk\npKREmpqapLm5WRwOh9mjdcNaJDS66OIVr3za+qn8rvF3nLzDLOiTttfrdTzyyCOvfvjhh/+SkJBw\n6rvf/e7/zJw580/p6elHjRwQaul6sm5ubjZ7JL9Yixinc7w5eYdP0NHet2/f98aNG/dZcnJyvYjI\n3Llz/1BeXn4v0Y5MqsXah7WI8Yh3eAUd7VOnTiUkJSU1+H6dmJh4cu/evbldX6dpWrBvARtqaWmR\nm2++2ewxRERkyYglIiLyVNFT8pQ8ZfI0QGCCjramaXogr9P1gF4GRZWUlMjy5cvNHiMopRdKzR4h\n4twWfZvMGjLL7DEsz99hN+hoJyQknGpoaEjy/bqhoSEpMTHxZLDXg5qWLVsmOTk58sQTT8gXX3wh\nly9f9vt6p9MpJ06ckJtuMncdoWmaLBmxhENFiNZ8vUau6Ff8viZGYiRai5ZJzkmSPih9gCazr6C/\nemTixIn76+rqUurr65NbW1tj33nnnQdmzpz5JyOHg/VpmibTpk2TQ4cOyaZNmyQzM1MGDx5s9liw\ngBiJkRu0G2TKDVOkcFihZDozxaFZ76uHVBN0tKOjo9tfffXVR6ZNm/aXjIyMIw888MA7fBIychFv\n+BDr8NLC+b+Hmqbp/O9nZNJ1XbZt29ZtbWKl9YgIn3MJVef1SNc1CKEOnqZpout6j4ttvo0dYdHb\nybutrc3s0WAwhzg4WQ8gTtoYEL6T9xtvvCHr16+XQYMGmToPJ21jeC57ZKRjJCdrg/k7aRNtRCSi\nDStjPQIANkG0AUAhRBsAFEK0AUAhRBsAFEK0AUAhRBsAFEK0AUAhRBsAFEK0AUAhRBsAFEK0AUAh\nRBsAFEK0AUAhRBsAFEK0AUAhRBsAFEK0AUAhRBsAFEK0AUAhRBsAFEK0AUAhRBsAFEK0AUAhRBsA\nFEK0AUAh0WYPAITbzp075W9/+1uPz23evLnbY+np6ZKWlhbusYCgaLquh+/imqaH8/pAIJKSkuT8\n+fMSGxt77bHGxkYRERk6dOh1r21ubpYFCxbImjVrBnRGoDNN00TXda3H54g27O63v/2tPP7443L5\n8uU+X+t0OqW2tlbGjRs3AJMBPfMXbXbasL2FCxdKXFxcn69zOBxSUFBAsGFpRBu2FxsbK88995wM\nHjzY7+tiYmKkuLh4gKYCgkO0ERH6Om1zyoYqiDYiQl+nbU7ZUAXRRsTo7bTNKRsqIdqIGL2dtjll\nQyVBR3vjxo33jx8//rDD4fBWVVVNMHIoIFy6nrY5ZUM1QUc7KyurdvPmzT+cMmXKTiMHAsLJd9r2\n4ZQN1QQd7bS0tE9TU1OPGzkMMBAWLlwoIiJRUVGcsqGcsP/skaKiomv33W63uN3ucL8l4Ffnb2fn\nlA0r8Hg84vF4Anqt329jz8/Przx79uzoro8XFxf/vKCgYIuISF5e3o7f/OY3/zlhwoSqbhfn29hh\nUZqmye7du2XSpElmjwJ04+/b2P2etCsrK/PDMxJgPoINFRnyJX+9/RcBAGCsoKO9efPmHyYlJTXs\n2bPnjhkzZvz57rvv/sDIwQAA3fGjWRGRvtkZmj0G0CN+NCsA2ATRBgCFEG0AUAjRBgCFEG0AUAjR\nBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCF\nEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0A\nUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUEjQ0V66dOmq9PT0o9nZ2Qdnz5793sWLF4cZORgA\noLugo/39739/2+HDh8cfPHgwOzU19fjzzz+/3MjBAADdBR3t/Pz8yqioqA4Rkdzc3L0nT55MNG4s\nAEBPoo24SFlZ2eJ58+Zt6Om5oqKia/fdbre43W4j3hIAbMPj8YjH4wnotZqu670+mZ+fX3n27NnR\nXR8vLi7+eUFBwRYRkZUrV66oqqqasGnTpjndLq5pur/rA2bRNE342IRVffPxqfX4XCgfuOvWrVu4\nZs2aH2/fvn2q0+ls6eGNiTYsiWjDyvxFO+j1SEVFxfRVq1Yt/eijj/65p2ADAIwX9Ek7JSWlrrW1\nNXbEiBEXRETuvPPO/37ttdf+47qLc9KGRXHShpWFbT0SwBsTbVgS0YaV+Ys23xEJAAoh2gCgEKIN\nAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh\n2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCg\nEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgEKINAAoh2gCgkKCj/fTTTz+bnZ19\n0OVy1UydOnV7Q0NDkpGDAQC603RdD+o3Xrp0aciQIUMuiYi88sorPz148GD2G2+88e/XXVzT9GCv\nD4STpmnCxyas6puPT62n54I+afuCLSLS1NQUP3LkyPPBXgsAEJjoUH7zihUrVr799tsPxcXFXdmz\nZ88dPb2mqKjo2n232y1utzuUtwQA2/F4POLxeAJ6rd/1SH5+fuXZs2dHd328uLj45wUFBVt8vy4p\nKXny2LFj3167du2i6y7OegQWxXoEVuZvPRL0TruzEydOjLnnnnu2fvLJJ5ld3phow5KINqwsLDvt\nurq6FN/98vLye3NycqqDvRYAIDBBn7Tvu+++d48dO/Zth8PhHTt27Oevv/76wzfffPOX112ckzYs\nipM2rCzs6xE/b0y0YUlEG1YWlvUIAGDgEW0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjR\nBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUAjRBgCFEG0AUIitou3xeMweISiqzi2i\n9uyqUvXPXNW5Raw1O9G2AFXnFlF7dlWp+meu6twi1prdVtEGALsj2gCgEE3X9fBdXNPCd3EAsDFd\n17WeHg9rtAEAxmI9AgAKIdoAoBDbRfvpp59+Njs7+6DL5aqZOnXq9oaGhiSzZwrU0qVLV6Wnpx/N\nzs4+OHv27PcuXrw4zOyZArFx48b7x48ff9jhcHirqqommD1PXyoqKqanpaV9mpKSUvfCCy8sM3ue\nQC1evLhs1KhR57KysmrNnqW/GhoakvLy8naMHz/+cGZm5ierV6/+mdkzBaKlpcWZm5u71+Vy1WRk\nZBxZvnz582bPJLqu2+rW2Ng4xHd/9erVPy0sLHzD7JkCvW3bti3f6/VG6bouy5YtK1m2bFmJ2TMF\ncjt69GjasWPHUt1u944DBw5MMHsef7f29nbH2LFjP/viiy+SW1tbY7Kzs2uOHDmSbvZcgdx27tx5\nV1VVVU5mZmat2bP093bmzJnR1dXVLl3X5dKlS/GpqanHVPlzv3z5cpyu69LW1hadm5u7Z9euXZPN\nnMd2J+0hQ4Zc8t1vamqKHzly5Hkz5+mP/Pz8yqioqA4Rkdzc3L0nT55MNHumQKSlpX2ampp63Ow5\nArFv377vjRs37rPk5OT6mJiYtrlz5/6hvLz8XrPnCsRdd921a/jw4V+ZPUcwRo8efdblctWIiMTH\nxzelp6cfPX369K1mzxWIuLi4KyIira2tsV6v1zFixIgLZs5ju2iLiKxYsWLlmDFjTrz11lsLnnzy\nyRKz5wlGWVnZ4nvuuWer2XPYzalTpxKSkpIafL9OTEw8eerUqQQzZ4o09fX1ydXV1Tm5ubl7zZ4l\nEB0dHVEul6tm1KhR5/Ly8nZkZGQcMXMeJaOdn59fmZWVVdv1tmXLlgIRkZUrV644ceLEmIULF657\n7LHHXjJ73s76ml3k7/PHxsa2zp8///dmztpZIHOrgO8dMFdTU1P8fffd9+7LL7/8aHx8fJPZ8wQi\nKiqqo6amxnXy5MnEnTt3TvF4PG4z54k2882DVVlZmR/I6+bPn/97q51W+5p93bp1C7du3XrP9u3b\npw7UTIEI9M/c6hISEk51/uR0Q0NDUmJi4kkzZ4oUbW1tMXPmzNn04IMPrp81a9b7Zs/TX8OGDbs4\nY8aMP+/fv3+i2+32mDWHkidtf+rq6lJ898vLy+/NycmpNnOe/qioqJi+atWqpeXl5fc6nc4Ws+cJ\nht7Ld3FZxcSJE/fX1dWl1NfXJ7e2tsa+8847D8ycOfNPZs9ld7qua4WFhW9mZGQcWbJkSanZ8wTq\n/PnzI7/++usbRUSam5tvqKyszDe9KWZ/Ztbo25w5c97NzMyszc7Orpk9e/amc+fO3Wz2TIHexo0b\nVzdmzJj/c7lc1S6Xq/rhhx9+zeyZArm99957P0xMTGxwOp3No0aNOjt9+vQPzJ7J323r1q13p6am\nHhs7duxnxcXFy82eJ9Db3LlzN9xyyy2nY2NjryYmJjaUlZUtMnumQG+7du2arGlaR3Z2do3v4/uD\nDz6YbvZcfd0OHTqUlZOTU5WdnV2TlZV16MUXX1xq9kx8GzsAKMR26xEAsDOiDQAKIdoAoBCiDQAK\nIdoAoBCiDQAKIdoAoJD/B5bva1NXaRq8AAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(1/sqrt(5)*vector(2,1), 1/sqrt(5)*vector(-1,2), vector(2,3))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}2\\\\3\\end{matrix}\\right]$, and its projection on the basis: $\\frac{1}{\\sqrt{5}}\\left[\\begin{matrix}2\\\\1\\end{matrix}\\right],\\frac{1}{\\sqrt{5}}\\left[\\begin{matrix}-1\\\\2\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\frac{1}{\\sqrt{5}}\\left[\\begin{matrix}7\\\\4\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFpCAYAAABXkHk0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHE1JREFUeJzt3X9w1PWdx/H3N7sJYZMIcvwIksRcQyIJxGwoNKcVuimX\ngvwQit5AqY5KrnMn17vCCINIPXMV0GCdA8rYm7EGtRTO0VNTBHOmyApaQSUEww8xOs0RwIAIAQIJ\n+bX3h4YmZLPZ39/v5/t9PmZ2JiTLd9/NhJfvvvazG83j8QgAQA0xeg8AAPAfoQ0ACiG0AUAhhDYA\nKITQBgCF2CN5cU3TOJoCAEHweDyat89HfNP2eDy63x5//HHdZzDzvCrObJSfTTN/j1Wb10gz+0I9\nAgAKIbQBQCGWCG2Xy6X3CAFRbV4RNWdWjWrfY9XmFVFjZq2//iSki2uaJ5LXB4KlaVq/3SGgl29/\nPvV5IhIAED6ENgAohNAGAIUQ2gCgEEIbABRCaAOAQghtAFAIoQ0ACiG0AUAhhDYAKITQBgCFENoA\noBBCGwAUQmgDgEIIbQBQCKENAAohtAFAIYQ2ACiE0AYAhRDaAKAQQhsAFEJoA4BCCG0AUAihDQAK\nCSm0W1pa4gsKCvY5nc7qnJycIytWrHgyXIMBAHrTPB5PSBe4cuWKw+FwXGlvb7ffcccd7/36179e\nescdd7wnIqJpmifU6wORoGma8LMJo/r251Pz9rWQ6xGHw3FFRKS1tTWuo6PDNmTIkHOhXhMA4F3I\nod3Z2RnjdDqrR4wYcbqwsHBXTk7OkXAMBgDozR7qBWJiYjqrq6udFy5cGDR16tT/dbvdLpfL5e76\neklJybX7ulwucblcoT4kAIPzeDzy5mdvypaaLbL1nq16j2N4brdb3G63X/cNudPu7oknnnhs4MCB\nzUuXLv21CJ02jItOO3IOnzksP9v2M6n6skocsQ45t5zGNFAR67TPnj07tLGxcbCISHNz88DKysqi\n/Pz8A6FcE4Cazl45K8XlxTLxuYmy98ReudpxVUYljdJ7LNMJqR758ssvR95///0vdnZ2xnR2dsbc\nd999v58yZcrOcA0HwPhaO1plw74NUuIukbbONmntaL32tYwhGTpOZk4hhXZubm5NVVXV+HANA0Ad\nXb31Q9sfksaWRrncdrnXfbKHZeswmbmF/EQkAOvp6q0/Of2J17AWEXHEOiTjRjbtcCO0Afjt0tVL\nsrhisWw9tFVa2lvEI30/mRsbEyvpg9OjN5xFENoA/FZ7rlY212yW9s52n4EtItLh6SC0I4A3jALg\nt/Ejx8uxnx+TiTdNlITYBJ/3bW5rltQbUqM0mXUQ2gACkj44Xf5c/GdZW7RWHLEOsWk2r/e7YcAN\nMsA+IMrTmR+hDSBgMVqMLJq4SA4vOiwdng6v9+GMdmQQ2gCC9qt3fyUiImt+uKbX1s0Z7cggtAEE\npfbrWtlUvUlWFa6SFZNWyOFFh2XCTROudd2c0Y4MQhtAULI2ZomIyMrJK0Xkr1136d+XygDbAMka\nkqXneKYV1jeM6nVx3jAKBsUbRoVmYflC2VS9Sc4sPSPDEob1+vrXV76WpAFJEmeL02E69fl6wyjO\naQMISPdaxFtgi4j8jeNvojyVdbBpw5LYtIOn/cc3C6Dncb5/kRLRXzcGwDoWli8UEZEzS8/oPIl1\nEdoA/OJPLYLIox6BJVGPBI5aJHqoRwCEhFrEOAhtAD5RixgL9QgsiXrEf9Qi0Uc9AiAo1CLGQ2gD\n8IpaxJioR2BJ1CP9oxbRD/UIgIBQixgXoQ2gB2oRY6MegSVRj/SNWkR/1CMA/EItYnyENgARoRZR\nBfUILIl6pDdqEeOgHgHgE7WIOghtwOKoRdRCPQJLoh75K2oR46EeAeAVtYh6CG3AoqhF1EQ9Akui\nHqEWMTLqEQA9UIuoi9AGLIZaRG3UI7AkK9cj1CLGF7F6pL6+PrWwsHDX2LFjD48bN+7Qhg0b/i2U\n6wGILGoR9YW0aTc0NCQ3NDQkO53O6qampsTvfve7+99444052dnZR0XYtGFcVty0a7+ulayNWbKq\ncJWsnLxS73HgQ8Q27eTk5Aan01ktIpKYmNiUnZ199NSpUzeFck0AkZG1MUtEhMBWnD1cF6qrq0s/\ncOBAfkFBwb7uny8pKbn2scvlEpfLFa6HBOAnahFjc7vd4na7/bpvWJ6IbGpqSnS5XO5f/vKXq+bM\nmfPGtYtTj8CgrFSPUIuox1c9EnJot7W1xc6cOfPNO++8863Fixevu+6BCW0YkpVCm9Mi6olYp+3x\neLTi4uLnc3Jyjlwf2AD0Ry1iPiGF9vvvv//9zZs337tr167C/Pz8A/n5+QcqKiqmhWs4AMHjRTTm\nxItrYElWqEeoRdTFe48AFkMtYl6ENmAy1CLmRj0CSzJzPUItoj7qEcAiisuLRYRaxMwIbcAkar+u\nlbLqMmoRk6MegSWZsR6hFjEP6hHA5KhFrIPQBhRHLWIt1COwJDPVI9Qi5kM9ApgUtYj1ENqAoqhF\nrIl6BJZkhnqEWsS8qEdgCKfbT0tLZ4veY5gCtYh1he3XjQH9efvy29LsaZa7Eu+SZHuy3uMoi1rE\n2qhHEDUvXnhRGjsbxS52uW3gbZI/IF80zev/A4w4lesRahHzox6BobRLu3zQ/IG80fQGdUmAqEVA\naEMX7dIuJ9tPyksXX5KG9ga9x1ECtQhEqEcQRV31yPX0qEtUrEeoRayDegSGRl3SP2oRdCG0YQjU\nJX2jFkF31COImr7qkevZxCY/dPxQcgbkRGwWleoRahHr8VWPcE4bhhIrsRKrxYpDc+g9iiFQi3jX\n2NEon7V+FvDfS41NlZH2kRGYKHoIbRhCV1h/f+D3ZUzcGInRaO6oRfp2sfOifNDyQcB/LyEmgdAG\nwsHlcBHW18namCUiIisnr9R5EuNJtafKkJghcq7znF/3t4lNbo69WXLiIle5RQv/QqCLWPmmAun6\nR5QWm0Zgd0Mt4pumaTLJMUliJdav+w/UBsrUhKm6vQI3nPhXgqiyiU0cmkNcDpcUDyqWooQiERF5\n6cJLOk9mHNQi/rnZfrMkxST1ez+72GV24myJ0+KiMFXkcXoEUfNR80eSEJPQqwb5ovULefPym1I8\nqFgSYxKjMouRT49wWsR/dW118semP4pHvH+v7GKXSQMnya3xt0Z5stDw4hoYwsSBEyVnQE6vGiQj\nLkNE2LZFqEUCsb9lv5Q3lfcZ2DaxSVpsmuQOyI3yZJFFaMMQZibMlDZpk6bOJr1H0Q21iH/2t+yX\n9efXy3vN70myLVlmJMzw2m2bqcfujnoEhrH+/HqJlVhZdOOiiD+WEesRahHf9rfsl/ea3xMRkWRb\nssxNmiuxWqx4PB7ZfHFzj5MkdrHLvKR5MtQ+VK9xQ8KLa6CEmQkz5c3Lb0pTZ1PUum2joBbpW19h\n3UXTNJnsmCzbm7ZLm7Rd67FVDez+ENowjIy4DJHL33Tb0di2jYJaxLv+wrq7NHuaJMUkyfnO86bs\nsbujHoGhROskiZHqEWqRngIJ6+6Otx2Xd6+8K/NumKf88T7qESjDats2tchfBRvWXdJi0+S+QfdF\najzDILRhOFbptqlFvhFqWFsN9QgMKdInSYxQj1i9FiGs+xaxemThwoVl27dvnzF8+PAzNTU15m3+\nEXVm37atXIsQ1qEJ6cU1Dz744KaKiopp4RoG6GLmV0latRa5/kUxiwYvknk3zCOwAxTSpj1p0qQ9\ndXV16WGaBejBrNu21d5ylc06vCL+RGRJScm1j10ul7hcrkg/JEzCjCdJrFSLENb+c7vd4na7/bpv\nyE9E1tXVpc+aNWubt06bJyIRqkid29bjicjar2sla2OWrCpcZeotm7AOHee0oSwzbdtmr0UI6+gg\ntGF4Zui2zVyLENbRFdLpkZ/85Cdbb7/99j9/9tlnWampqfWbNm16MFyDAV1UP0li1tMinAbRBy+u\ngRKONh2Vt9velps/vFnmTJ0T8vWi2Wmb7UU0bNaRR6cN5Y1sHykiIseyj8mSJUtk7dq1Ehtr/KAw\nUy1CWBsDv7kGynjxgRclPiletpZvlYkTJ0p9fb3eI/lkllqEGsRYqEeghMbGRhkxYoSsbVgrLZda\nZOV3VkpCQoL84Q9/kJkzZwZ8vWjUI6rXImzW+uEX+8I0nr/3eYlPipeEYQly8eJFmTdvnixZskTa\n2tr0Hq0HlWsRNmtjY9OGEro27dbWVll3bp20XGqRR25+REREHA6HZGZmyrZt2yQ1NdWv60Vy01b1\nRTRs1sbha9MmtKGE7qGdOz1XijcXy7/n/LtcbLgoIiI2my2guiSSoa1aLUJYGw/1CEylZkeNiIg8\nuu/Ra5/r6OgwRF2iUi1CDaImQhtK6uq2b0i+ocfnm5ubZd26dbJ79+6oz6TKaRHCWm3UI1BC93qk\nS/duW9M0iY+Plx/84AdSWloqt956q8/rRaIeMXotQg2iDl5cA1N6/t7npXhzsQxNHSoTxk7wK6wj\nxci1CGFtLoQ2lKRpmny+63MREVn63lJZnrZct1mMWosQ1uZEPQIlNDY2yvDhw6W9vV3i4+PF5XJJ\naWmp1DTWyFfjvpKZzTMl46YMv68XznrEaLUIYa0+6hEoz263S2dnp0ybNk1KS0slN/eb37mRK7my\n/vx6ebX9VVku0d+2jVSLENbWQGhDCYmJiXL+/HlJSkrq9bVhh4bJV+O+ki9OfRHQth0qo9QihLW1\nUI/AFNafXy8tl1r87rbDUY/oXYsQ1uZFPQLTi/a2rWctQlhbG5s2TCOQbTuUTVuv9xYhrK2DTRuW\nEK1tO9q/oJewRnds2jAVf7ftYDft4vJiKasukzNLzwT05OPVq1cDfqyazhp5v+V9ESGsrYZNG5YR\nyW072NMi77zzjkyZMkVsNptf93f9i0tmlcwSEcIavbFpw3T82baD2bSDPS3S0tIiN910k5w/f97n\n/Qp/XiizfzVbRESOVx2Xf/rbf5Ks72QF9FgwB96aFZYy7NAwiU+Kly9OfRG2a4ZyWiQ+Pl5KSkok\nISHB69cLf14o686tk9m/mi11H9XJ45mPy23nbyOw4RWbNkypv207kE07HKdFvG3b3Tfruo/q5Nkf\nPys2j01++tOfynPPPRfU48Ac+M01sJwte7b4fE+SQEI7XC+i2bBhgzz66KPyvQe/1yusW6+0SkxM\njGRmZsrBgwdlwIABIT0W1MYTkbCcBZMWhOU9ScL5Iprm7zTL6vrVItIzrLs4HA7Zvn07gQ2fCG2Y\nVqgnScL13iLPVDwj9gK7xH8/Xuo+qpNNCzbJha8v9LiPw+GQsrIyyciI3nunQE3UIzC1vrptf+qR\nUGuRrrAWETl79Kw8fOvDEm+Pl5EjR0pjY+O1+w0cOJAeGz1wegSWFexJklBqkWcqnpH159eLvcAu\nZ4+elftj75cnbn9CBicOvnaSxOFwiIhITEyMpKWlycaNGwN+HFgTmzZMz9u27WvTDva0iLfNenDi\n4F73a2lpubZtJyYmSnV1NbUIemDThqUFum0H+t4ivjZrb7q2bRGhx0bA2LRhCddv231t2oG8t4i/\nm7U3V69elZ07d8r06dMD/F8CK+DIHyzPn5Mk/p4W6Qrrrs364VsflsG3+xfWXQYMGEBgIyhs2rCM\n7tu2t027v9MioWzWQCDYtAHpuW1fz9dpkXBs1kC4sGnDUrq27UdufuTapt3XaRE2a+glYqdHKioq\npo0ZM+bTzMzM2tLS0uBfKwxESddJku6uPy0S6GkQIJqC3rQ7Ojpst9xyy7E//elPfz9q1KiTEydO\n/Gjr1q0/yc7OPnrt4mzaMKD159fL4iGLxePx9Dgt8tKel9isYQgR6bQ//PDD740ePfrz9PT0OhGR\n+fPn/3d5efns7qENGNGwQ9+cDHnn2DtSVl0m/zzhn2VL6xY6aygh6NA+efLkqNTU1PquP6ekpJzY\nt29fwfX30zSv/7EAdDdlzBQREfkv+a8en18lq/QYB/BL0KGtaZpfvQf1CIxI0zRZd26dfPXpV7I0\ndyk1CAzF17IbdGiPGjXqZH19fWrXn+vr61NTUlJOBHs9INp+ceMvRG7TewogMEGfHpkwYcLHtbW1\nmXV1demtra1xL7/88ry77rrrj+EcDgDQU9Cbtt1ub9+4cePPp06d+r8dHR224uLi53kSEgAiixfX\nwJIC+R2RQLTx1qwAYBKENgAohNAGAIUQ2gCgEEIbABRCaAOAQghtAFAIoQ0ACiG0AUAhhDYAKITQ\nBgCFENoAoBBCGwAUQmgDgEIIbQBQCKENAAohtAFAIYQ2ACiE0AYAhRDaAKAQQhsAFEJoA4BCCG0A\nUAihDQAKIbQBQCGENgAohNAGAIUQ2gCgEEIbABRCaAOAQghtAFAIoQ0ACiG0AUAhhDYAKITQBgCF\nENoAoJCgQ/uVV175h7Fjxx622WwdVVVV48M5FADAu6BDOzc3t+b111//8eTJk3eHcyAAQN/swf7F\nMWPGfBrOQQAA/Qs6tP1VUlJy7WOXyyUulyvSDwkASnG73eJ2u/26r+bxePr8YlFRUWVDQ0Py9Z9f\ns2bNo7NmzdomIlJYWLjrmWeeeXj8+PFVvS6uaR5f1wf0omma8LMJo/r251Pz9jWfm3ZlZWVRZEYC\nAAQjLEf++vovAgAgvIIO7ddff/3Hqamp9Xv37v27GTNmbL/zzjvfCudgAIDefHbaIV+cThsGRacN\nI/PVafOKSABQCKENAAohtAFAIYQ2ACiE0AYAhRDaAKAQQhsAFEJoA4BCCG0AUAihDQAKIbQBQCGE\nNgAohNAGAIUQ2gCgEEIbABRCaAOAQghtAFAIoQ0ACiG0AUAhhDYAKITQBgCFENoAoBBCGwAUQmgD\ngEIIbQBQCKENAAohtAFAIYQ2ACiE0AYAhRDaAKAQQhsAFEJoA4BCCG0AUAihDQAKIbQBQCFBh/ay\nZcuezs7OPpqXl3dw7ty5r124cGFQOAcDAPQWdGj/6Ec/evvw4cNjDx48mJeVlfXZk08+uSKcgwEA\negs6tIuKiipjYmI6RUQKCgr2nThxIiV8YwEAvAlLp11WVrZw+vTpO8JxLQBA3+y+vlhUVFTZ0NCQ\nfP3n16xZ8+isWbO2iYisXr16ZVxcXOuCBQu2eLtGSUnJtY9dLpe4XK6QBgYAs3G73eJ2u/26r+bx\neIJ+oBdeeOGB55577mc7d+6cEh8f39Lr4prmCeX6QKRomib8bMKovv351Lx9zeem7UtFRcW0p59+\netm77777A2+BDQAIv6A37czMzNrW1ta4IUOGnBMRue222z549tlnF/W4OJs2DIpNG0bma9MOqR7x\n44EJbRgSoQ0j8xXavCISABRCaAOAQghtAFAIoQ0ACiG0AUAhhDYAKITQBgCFENoAoBBCGwAUQmgD\ngEIIbQBQCKENAAohtAFAIYQ2ACiE0AYAhRDaAKAQQhsAFEJoA4BCCG0AUAihDQAKIbQBQCGENgAo\nhNAGAIUQ2gCgEEIbABRCaAOAQghtAFAIoQ0ACiG0AUAhhDYAKITQBgCFENoAoBBCGwAUQmgDgEII\nbQBQCKENAAoJOrQfe+yxJ/Ly8g46nc7qKVOm7Kyvr08N52AAgN40j8cT1F+8dOlSUlJS0iURkd/8\n5jf/evDgwbzf/e53/9jj4prmCfb6QCRpmib8bMKovv351Lx9LehNuyuwRUSampoShw4dejbYawEA\n/GMP5S+vXLly9e9///v7HA7Hlb179/6dt/uUlJRc+9jlconL5QrlIQHAdNxut7jdbr/u67MeKSoq\nqmxoaEi+/vNr1qx5dNasWdu6/vzUU089cuzYsVs2bdr0YI+LU4/AoKhHYGS+6pGgO+3ujh8/njZ9\n+vQdhw4dGnfdAxPaMCRCG0YWkU67trY2s+vj8vLy2fn5+QeCvRYAwD9Bb9r33HPPq8eOHbvFZrN1\nZGRkfPHb3/72oeHDh5/pcXE2bRgUmzaMLOL1iI8HJrRhSIQ2jCwi9QgAIPoIbQBQCKENAAohtAFA\nIYQ2ACiE0AYAhRDaAKAQQhsAFEJoA4BCCG0AUAihDQAKIbQBQCGENgAohNAGAIUQ2gCgEEIbABRC\naAOAQghtAFAIoQ0ACiG0AUAhhDYAKITQBgCFENoAoBBCGwAUYonQdrvdeo8QENXmFVFzZtWo9j1W\nbV4RNWYmtA1ItXlF1JxZNap9j1WbV0SNmS0R2gBgFoQ2AChE83g8kbu4pkXu4gBgYh6PR/P2+YiG\nNgAgvKhHAEAhhDYAKMQyof3YY489kZeXd9DpdFZPmTJlZ319fareM/mybNmyp7Ozs4/m5eUdnDt3\n7msXLlwYpPdM/XnllVf+YezYsYdtNltHVVXVeL3n6UtFRcW0MWPGfJqZmVlbWlq6XO95+rNw4cKy\nESNGnM7Nza3RexZ/1dfXpxYWFu4aO3bs4XHjxh3asGHDv+k9ky8tLS3xBQUF+5xOZ3VOTs6RFStW\nPKn3TH3yeDyWuF28eDGp6+MNGzb8a3Fx8e/0nsnX7e233y7q6OiI8Xg8snz58qeWL1/+lN4z9Xc7\nevTomGPHjmW5XK5d+/fvH6/3PN5u7e3ttoyMjM//8pe/pLe2tsbm5eVVHzlyJFvvuXzddu/ePamq\nqip/3LhxNXrP4u/tyy+/TD5w4IDT4/HIpUuXErOyso4Z/ft8+fJlh8fjkba2NntBQcHePXv23KH3\nTN5ultm0k5KSLnV93NTUlDh06NCzes7Tn6KiosqYmJhOEZGCgoJ9J06cSNF7pv6MGTPm06ysrM/0\nnsOXDz/88HujR4/+PD09vS42NrZt/vz5/11eXj5b77l8mTRp0p4bb7zxvN5zBCI5ObnB6XRWi4gk\nJiY2ZWdnHz116tRNes/li8PhuCIi0traGtfR0WEbMmTIOb1n8sYyoS0isnLlytVpaWnHX3zxxfsf\neeSRp/Sex19lZWULp0+fvkPvOczg5MmTo1JTU+u7/pySknLi5MmTo/Scyezq6urSDxw4kF9QULBP\n71l86ezsjHE6ndUjRow4XVhYuCsnJ+eI3jN5Y6rQLioqqszNza25/rZt27ZZIiKrV69eefz48bQH\nHnjghSVLlvyn0ecV+WbmuLi41gULFmzRc9Yu/sxsZLx2ILqampoS77nnnlfXr1//i8TExCa95/El\nJiams7q62nnixImU3bt3T3a73S69Z/LGrvcA4VRZWVnkz/0WLFiwxQiba3/zvvDCCw/s2LFj+s6d\nO6dEa6b++Ps9NqpRo0ad7P4kdH19fWpKSsoJPWcyq7a2tti77777f+69997Nc+bMeUPvefw1aNCg\nCzNmzNj+8ccfT3C5XG6957meqTZtX2prazO7Pi4vL5+dn59/QM95+lNRUTHt6aefXlZeXj47Pj6+\nRe95AuXp49VcepswYcLHtbW1mXV1demtra1xL7/88ry77rrrj3rPZTYej0crLi5+Picn58jixYvX\n6T1Pf86ePTu0sbFxsIhIc3PzwMrKyiLDZoTez4RG63b33Xe/Om7cuJq8vLzquXPn/s/p06eH6z2T\nr9vo0aNr09LS/s/pdB5wOp0HHnrooWf1nqm/22uvvfbjlJSU+vj4+OYRI0Y0TJs27S29Z/J227Fj\nx51ZWVnHMjIyPl+zZs0Kvefp7zZ//vytI0eOPBUXF3c1JSWlvqys7EG9Z+rvtmfPnjs0TevMy8ur\n7voZfuutt6bpPVdft08++SQ3Pz+/Ki8vrzo3N/eTtWvXLtN7pr5uvIwdABRimXoEAMyA0AYAhRDa\nAKAQQhsAFEJoA4BCCG0AUAihDQAK+X80opHQXk+MGQAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Electron Spin

\n", "
    \n", "
  • The \"use_y\" flag will determine whether y spin states are included.
  • \n", "
  • The \"complex\" flag tells whether to include complex amplitudes.
  • \n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import sglib\n", "reload(sglib)\n", "from sglib import *\n", "#\n", "set_font_size(3) # Font size of 3 or 4 works pretty well\n", "z=1; x=2; y=3 # Don't change this line!!!\n", "prob = electron_problem(\n", " min_int=0, max_int=5, use_y=False, complex=False)\n", "#prob.set_debug(True) # Probably leave this commented out\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Given the input state: $\\;-\\dfrac{1}{\\sqrt{5}}| +z \\rangle-\\dfrac{2}{\\sqrt{5}}| -z \\rangle$\n", "

\n", "If you do a measurment in the $x$ basis.\n", "

\n", "What is the probability of getting $|+x\\rangle$
" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = 10/23\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The answer is: $\\;\\frac{9}{10}$, or approximately $\\;0.9000$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

\n", "You can ignore everything below this point.\n", "

\n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "Print(prob.latex)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Given the input state: $\\;-\\dfrac{2 + 3 i}{3 \\sqrt{7}}| +x \\rangle-\\dfrac{5 + 5 i}{3 \\sqrt{7}}| -x \\rangle$\n", "

\n", "If you do a measurment in the $z$ basis.\n", "

\n", "What is the probability of getting $|-z\\rangle$
" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "print(prob.latex)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Given the input state: $\\;-\\dfrac{2 + 3 i}{3 \\sqrt{7}}| +x \\rangle-\\dfrac{5 + 5 i}{3 \\sqrt{7}}| -x \\rangle$\n", "

\n", "If you do a measurment in the $z$ basis.\n", "

\n", "What is the probability of getting $|-z\\rangle$\n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }