{ "metadata": { "name": "", "signature": "sha256:76f550b6b93bf758e0c2f64bc2a024d793987411810ee27d2077dd7bf548516f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "

Problem Generator Notebook

\n", "
\n", "

\n", "This notebook doesn't go with any particular section of the notes.\n", "It is intended to generate \"random\" problems of various types." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This setup cell below must be run first" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%autosave 0\n", "%matplotlib inline\n", "import sglib\n", "reload(sglib)\n", "from sglib import *\n", "# The next import makes expressions like 1/2 work.\n", "# So you no longer have to say frac(1/2)\n", "from __future__ import division" ], "language": "python", "metadata": {}, "outputs": [ { "javascript": [ "IPython.notebook.set_autosave_interval(0)" ], "metadata": {}, "output_type": "display_data" }, { "output_type": "stream", "stream": "stdout", "text": [ "Autosave disabled\n" ] } ], "prompt_number": 27 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Contents

\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " \n", "

Status

\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Vector Problems

\n", "" ] }, { "cell_type": "code", "collapsed": false, "input": [ "prob = vector_problem(max_dim=3, max_int=5, complex=True)\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Normalize: $\\left[\\begin{matrix}2 i\\\\2 + 4 i\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = sqrt(33)\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The correct answer is:\n" ] }, { "html": [ "$\\frac{1}{\\sqrt{6}}\\left[\\begin{matrix}i\\\\1 + 2 i\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 29 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Matrix Problems

\n", "" ] }, { "cell_type": "code", "collapsed": false, "input": [ "prob = matrix_problem(max_dim=2, max_int=5, complex=True)\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "$\\left[\\begin{matrix}3 + 5 i & 3 + 3 i\\\\1 + 4 i & 4 i\\end{matrix}\\right] \\left[\\begin{matrix}1 + 3 i\\\\2 + 2 i\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = Matrix([ (4,8), (7,27) ])\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The correct answer is:\n" ] }, { "html": [ "$\\left[\\begin{matrix}-12 + 26 i\\\\-19 + 15 i\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 31 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Matrix Test" ] }, { "cell_type": "code", "collapsed": false, "input": [ "M = Matrix([ (1,2,3), (4,5,6), (7,8,9) ])\n", "Print('$%s$'%sy.latex(M)) " ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "$\\left[\\begin{matrix}1 & 2 & 3\\\\4 & 5 & 6\\\\7 & 8 & 9\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 32 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Basis Problems

\n", "
    \n", "
  • In all of these problems, the original vector is given in the\n", " \"standard\" basis (1, 0) and (0, 1).
  • \n", "
  • All vectors in these problems are column vectors.
  • \n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "prob = change_basis_problem(max_int=5, complex=False)\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Transform the vector $\\left[\\begin{matrix}5\\\\2\\end{matrix}\\right]$ to the basis $\\left(\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\1\\end{matrix}\\right],\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\-1\\end{matrix}\\right]\\right)$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 33 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = col(0,0)\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The correct answer is: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}7\\\\3\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 34 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Draw Projections

\n", "
    \n", "
  • Pick the cell below that is closest to the problem you're interested in and then modify it for your problem.
  • \n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(vector(1,0), vector(0,1), vector(-4,1))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}-4\\\\1\\end{matrix}\\right]$, and its projection on the basis: $\\left[\\begin{matrix}1\\\\0\\end{matrix}\\right],\\left[\\begin{matrix}0\\\\1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\left[\\begin{matrix}-4\\\\1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAErJJREFUeJzt3X1sVHW+x/HPmU5bWrpmF7xIaFmKlyItXEpBtrqJOsQt\nBQK7BEkEV/EPSbzxISkk7D8ml2q2NICVLQGTjQvhGrPEZE0skNKA6LBKVxoUufIQw03oZlpub9AK\nbOWpD+f+wbbXQtspnYdzvtP3yzRpZ6bnfDP+8ubHYdpxXNd1BQAwI+D1AACAe0O4AcAYwg0AxhBu\nADCGcAOAMcFEHtxxnEQeHgBS1lAv+Ev4jtt13aR9bNy4Manns/LB8zLwR7LXp4UP1oo/npdouFQC\nAMYQbgAwJqXCHQqFvB7Bl3heMFyslYH57Xlx3OFcUBnpwR1nWNdrAC+wPuFX0dZmSu24AWA0INwA\nYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4A\nMIZwA4AxhBsAjCHcAGAM4QYAY2IOd3d3t0pKSrRs2bJ4zAMAiCLmcNfW1qqoqEiO48RjHgBAFDGF\nu6WlRfX19Vq7di3vlg0ASRKM5ZvXrVunrVu36urVq4M+prKysu/zUCikUCgUyykBIOWEw2GFw+Fh\nP95xR7hVPnDggA4ePKidO3cqHA6rpqZG+/fv739wx2EnDt9ifcKvoq3NEV8qaWxs1L59+zR16lSt\nXr1aH3/8sdasWTPSwwEAhmnEO+4fO3r0qN5880123DCF9Qm/StiOe6ATAQASLy477kEPzo4GPsb6\nhF8lbccNAEgOwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4Ax\nhBsAjCHcAGAM4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAY\nwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM\n4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCG\ncAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxMYU7EolowYIFmjlzpmbNmqXt\n27fHay4AwCAc13XdkX5zW1ub2traNGfOHHV0dGjevHn68MMPVVhYePvgjqMYDg8kFOsTfhVtbca0\n4544caLmzJkjScrJyVFhYaEuXrwYyyEBAFHE7Rp3c3OzTp48qdLS0ngdEgAwgGA8DtLR0aGVK1eq\ntrZWOTk5/e6rrKzs+zwUCikUCsXjlACQMsLhsMLh8LAfH9M1bknq7OzU0qVLtXjxYlVUVPQ/ONcQ\n4WOsT/hVtLUZU7hd19Xzzz+v8ePHa9u2bfd8csBLrE/4VULD/dlnn+nxxx/X7Nmz5TiOJKm6ulqL\nFi0a1skBL7E+4VcJDXesJwe8xPqEXyX05YAAgOQj3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZw\nA4AxhBsAjCHcAGAM4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4\nAcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGNGZbgv/XBJ+7/Zr98d/p0e+dMjaow0ej0SAAxb\n0OsBEq2rp0tf/+/Xaow06siFI2qMNOr7G99rTHCMOm52KC2Qpsy0TK/HBIBhS7lwX/rhkv7W8jd9\n+vdPdeTCEZ29dFYZaRnq6unS9a7rfY+71X1LkpQZyNSciXO8GhcA7llKhfto81GF/jOkseljda3z\nmly5kqSb3TcH/Z75k+YrLZCWrBHhE5c7LkuSTpw/oYcLHvZ4GuDepNQ17semPKb1j6yX+8//oslM\ny9Syh5YlYTL4za5Pd0mSPvz7hx5PAty7lAp3wAmoprxGb5W/paxg1rAeH8oPJX4w+Mrljsvqmtkl\nSfpp0U914vwJjycC7k1KhbvXi/NeVN2qOuVk5Az5uOtd1zX/nflyXndU+qdSHTx/UK4bfacO23Z9\nukuBtNtLP5AeYNcNc1Iy3JJU9q9lOr72uB4Y+4CCgYEv5T/288dU/0y9SnNL1dTapCV/XqLAGwFC\nnsJ6d9sZ2RmSpLRgGrtumJOy4Zakon8p0ql/P6UZ98/QmOCYfvdlpmXq1w/9WosLFuvztZ/L3eiq\n5z96CHmK+/Fuuxe7bliT0uGWpAdyHlDT2iY9OfVJZadn992ekZahBfkL+j3WcRxCnsLu3G33YtcN\na1I+3JKUlZ6lfav36cV5L/bFu6unK+rrtwl5ahlot92LXTcsGRXhlm6/guSt8re0rXyb0py0Eb1+\nm5DbNdhuuxe7bljiuAksi+M4vgzXX5v/qmAgqF/+/JdxPa7rumr47wa9fvR1HW893u++X+T+QpVP\nVGrRtEVyHCeu50V0NQdr1DO7p1+4K8ZV6A/tf+j7ururW+2n2vX7X/3eixGBPtHaOSrDnSyE3B8u\nd1zWH9v/qDE/6f8P1HeGW5I6r3cq9EOIn6aEp6K1c9RcKvECl1b8YdenuxTMHN5vd0jLSONaN3wv\npX5Xid/1hnxxwWJJd+/Il/x5Sd9j2ZHHT6c6da352oD3Xf2fq+r8R2e/25wenm/4G5dKfIRLK8nl\nOI7C/xXWE//2hNejAP1wjdswQp5YhBt+RbhTCCGPL8INvyLcKYyQx4Zww68I9yhCyO8N4YZfEe5R\njJAPjXDDrwg3+gwV8tLcUm18YuOoCjnhhl8RbgxqtIeccMOvCDeGbbSFnHDDrwg3RizVQ0644VeE\nG3GTaiEn3PArwo2EsR5ywg2/ItxIGmshJ9zwK8INz/g95IQbfkW44Rt+Cznhhl8RbviW1yEn3PAr\nwj2AHrdH39z6RsdvHNfCsQs1KTjJ65Gg5Ic8keFevXq1rl+/rurqahUWFsb9+EhthPtHeoN97Pox\n3XJvqUc9WjR2kaZlTPN6NAwg0SFPZLjnzp2rr776SpmZmSovLyfguCcJf8/JhoYGzZgxQwUFBdq8\neXOsh0uIHrdH526e0+4ru/XJtU/0g/uDOtWpNKV5PRqGMNR7dva+1Vvve3Y+8qdHfPeena7r6saN\nG9q/f7/mzp2r5cuX69y5c16PhRQQ0467u7tbDz30kD766CPl5uZq/vz52rt3b9/Owusd95077E71\nf2/BDGWobGwZO26jYt2RJ3rHffLkyX63BQIBZWRksANHVAndcTc1NWnatGnKz89Xenq6Vq1apbq6\nulgOGReD7bCRWqztyHt6etiBIy5iepf31tZWTZ48ue/rvLw8HT/ef+fjlx+2wOh2XMe1REvuuj00\nO5T0WXoDXldX54uNDuyJKdzDiXIydzitXa36yz/+krTzwbaKcRX6Wf7P9H3z957OEQgEVFRUpK+/\n/trTOeAf0doaU7hzc3MViUT6vo5EIsrLy4vlkDHJDebqt/f9VseuHVOkK6Ie9cjV4H9wcI17dKtQ\nhdovtCfk2ANd475Tdna20tPT9dprr+nll19OyBxITTGF++GHH9b58+fV3NysSZMm6f3339fevXvj\nNduI3J92v37zk9/o2+5vhx1wIJnuDHZ2drbXI8GYmMIdDAa1Y8cOlZeXq7u7Wy+88IJv/qWcgMNv\nCDbiZdT8AM5AAedSyeiWyPX540slBBv3KtrajGnHbclAO/AudXk9FlJYRkaGsrKyCDbibtTsuO/0\nbfe3OnH9hOZnzdf4tPFejwMPJHJ9vvHGG8rKyiLYGBF+VwkwCNYn/Crhv6sEAJBchBsAjCHcAGAM\n4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCG\ncAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM4QYAYwg3ABhD\nuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcAOAMYQbAIwh\n3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM4QYAYwg3ABhDuAHAGMINAMYQ\nbgAwhnADgDGEGwCMGXG4N2zYoMLCQhUXF2vFihW6cuVKPOcCAAxixOFeuHChzpw5o1OnTmn69Omq\nrq6O51wAgEGMONxlZWUKBG5/e2lpqVpaWuI2FABgcMF4HGT37t1avXr1gPdVVlb2fR4KhRQKheJx\nSgBIGeFwWOFweNiPd1zXdQe7s6ysTG1tbXfdvmnTJi1btkySVFVVpS+//FIffPDB3Qd3HA1xeMBT\nrE/4VbS1OWS4o9mzZ4/eeecdHTlyRGPGjLnnkwNeYn3Cr6KtzRFfKmloaNDWrVt19OjRAaMNAEiM\nEe+4CwoKdOvWLY0bN06S9Oijj+rtt9/uf3B2NPAx1if8KqGXSmI9OeAl1if8Ktra5CcnAcAYwg0A\nxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM4QYA\nYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcAOA\nMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM4QYAYwg3ABhDuAHA\nGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcAOAMYQbAIwh3ABg\nDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjIk53DU1NQoEAmpvb4/HPACAKGIKdyQS0eHD\nhzVlypR4zQMAiCKmcK9fv15btmyJ1ywAgGEIjvQb6+rqlJeXp9mzZw/5uMrKyr7PQ6GQQqHQSE8J\nACkpHA4rHA4P+/GO67ruYHeWlZWpra3trturqqq0adMmHTp0SPfdd5+mTp2qEydOaPz48f0P7jga\n4vCAp1if8Ktoa3PIcA/m9OnTevLJJ5WdnS1JamlpUW5urpqamjRhwoRhnxzwEusTfpWQcN9p6tSp\n+uKLLzRu3Lh7OjngJdYn/Cra2ozL67gdx4nHYQAAwxCXHfegB2dHAx9jfcKvkrLjBgAkD+EGAGMI\nNwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGE\nGwCMIdwAYAzhBgBjUirc4XDY6xF8iecFw8VaGZjfnhfCPQrwvGC4WCsD89vzklLhBoDRgHADgDGO\nO9R7wMd6cMdJ1KEBIKUNleagVycGAIwMl0oAwBjCDQDGpGy4a2pqFAgE1N7e7vUovrBhwwYVFhaq\nuLhYK1as0JUrV7weyVMNDQ2aMWOGCgoKtHnzZq/H8YVIJKIFCxZo5syZmjVrlrZv3+71SL7R3d2t\nkpISLVu2zOtRJKVouCORiA4fPqwpU6Z4PYpvLFy4UGfOnNGpU6c0ffp0VVdXez2SZ7q7u/XKK6+o\noaFBZ8+e1d69e3Xu3Dmvx/Jcenq6tm3bpjNnzujzzz/Xzp07eV7+qba2VkVFRb55wUVKhnv9+vXa\nsmWL12P4SllZmQKB2/+7S0tL1dLS4vFE3mlqatK0adOUn5+v9PR0rVq1SnV1dV6P5bmJEydqzpw5\nkqScnBwVFhbq4sWLHk/lvZaWFtXX12vt2rW+ecFFyoW7rq5OeXl5mj17ttej+Nbu3bu1ZMkSr8fw\nTGtrqyZPntz3dV5enlpbWz2cyH+am5t18uRJlZaWej2K59atW6etW7f2bXz8IKEvB0yUsrIytbW1\n3XV7VVWVqqurdejQob7b/PInZDIM9rxs2rSp79pcVVWVMjIy9MwzzyR7PN/wy193/aqjo0MrV65U\nbW2tcnJyvB7HUwcOHNCECRNUUlLiqx97Nxnuw4cPD3j76dOndeHCBRUXF0u6/VecefPmqampSRMm\nTEjmiJ4Y7HnptWfPHtXX1+vIkSNJmsifcnNzFYlE+r6ORCLKy8vzcCL/6Ozs1FNPPaVnn31Wy5cv\n93oczzU2Nmrfvn2qr6/XjRs3dPXqVa1Zs0bvvvuut4O5KSw/P9/97rvvvB7DFw4ePOgWFRW5ly5d\n8noUz3V2droPPvige+HCBffmzZtucXGxe/bsWa/H8lxPT4/73HPPuRUVFV6P4kvhcNhdunSp12O4\nruu6/rlokwD8lfj/vfrqq+ro6FBZWZlKSkr00ksveT2SZ4LBoHbs2KHy8nIVFRXp6aefVmFhoddj\nee7YsWN677339Mknn6ikpEQlJSVqaGjweixf8UtTEvq7SgAA8ZfSO24ASEWEGwCMIdwAYAzhBgBj\nCDcAGEO4AcAYwg0AxvwfkX3+O8+b+8kAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(vector(-1,0), vector(0,-1), vector(-4,1))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}-4\\\\1\\end{matrix}\\right]$, and its projection on the basis: $\\left[\\begin{matrix}-1\\\\0\\end{matrix}\\right],\\left[\\begin{matrix}0\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\left[\\begin{matrix}4\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE01JREFUeJzt3X9sVHW6x/HPmQ7lh5U/wAvElqV4QWkh0IpsdRPcIWZA\nCHWNmgisP2Ik8cZoUkhY/etabwQCiCwETIzKusYsIVkTi9zSWNFhV6rtVkl3AWO8STHTkhoUL9yu\n1LbTc//Adim0ndKZ6fk+0/fLNKHT6ZnH8fDm4Tgwnu/7vgAAZoSCHgAAcH0INwAYQ7gBwBjCDQDG\nEG4AMCacyYN7npfJwwNA1hrqBX8Z37h93x+1jxdeeGFUH8/KB8/LwB+jfX5a+OBcceN5SYZLJQBg\nDOEGAGOyKtyRSCToEZzE84Lh4lwZmGvPi+cP54LKSA/uecO6XgMEgfMTrkp2bmbVxg0AYwHhBgBj\nCDcAGEO4AcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4Ax\nhBsAjCHcAGAM4QYAYwg3ABiTcrgTiYRKS0tVXl6ejnkAAEmkHO7du3eruLhYnuelYx4AQBIphbul\npUXV1dVav34975YNAKMknMo3b9iwQTt27NDFixcHvU9lZWXfjyORiCKRSCoPCQBZJxaLKRaLDfv+\nnj/CVfnw4cM6cuSI9u3bp1gspp07d+r999/vf3DPYxOHszg/4apk5+aIL5XU1dXp0KFDmj17ttau\nXauPPvpIjz322EgPBwAYphFv3Fc6duyYXn75ZTZumML5CVdlbOMe6IEAAJmXlo170IOz0cBhnJ9w\n1aht3ACA0UG4AcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZw\nA4AxhBsAjCHcAGAM4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4\nAcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHc\nAGAM4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBu\nADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMCalcMfjcS1btkzz58/XggULtGfP\nnnTNBQAYhOf7vj/Sb25ra1NbW5tKSkrU3t6uxYsX67333lNRUdHlg3ueUjg8kFGcn3BVsnMzpY17\nxowZKikpkSTl5eWpqKhIZ8+eTeWQAIAk0naN+8yZMzpx4oTKysrSdUgAwADC6ThIe3u7HnroIe3e\nvVt5eXn9vlZZWdn340gkokgkko6HBICsEYvFFIvFhn3/lK5xS1JXV5dWr16tlStXqqKiov/BuYYI\nh3F+wlXJzs2Uwu37vh5//HFNnTpVu3btuu4HB4LE+QlXZTTcn3zyie6++24tXLhQnudJkrZu3ap7\n7713WA8OBInzE67KaLhTfXAgSJyfcFVGXw4IABh9hBsAjCHcAGAM4QYAYwg3ABhDuAHAGMINAMYQ\nbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMI\nNwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGDMmAz3uX+e0/tfva/f1f5Od75xp+ridUGPBADD\nFg56gEzr7unWP779h+ridTrafFR18Tr90PGDJoQnqP2nduWEcjQ+Z3zQYwLAsGVduM/985w+bflU\nf/3mrzrafFSnz51Wbk6uunu6dan7Ut/9OhOdkqTxofEqmVES1LgAcN2yKtzHzhxT5I8R3TDuBv3Y\n9aN8+ZKknxI/Dfo9S25eopxQzmiNCEd0+V2SpPOJ85qSMyXgaYDrk1XXuJfOWqqNd26U//M/yYzP\nGa/y28pHYTK4pqmjSZJ0/NLxgCcBrl9WhTvkhbRzxU69suIVTQxPHNb9I4WRzA8Gp3T5Xfpbx98k\nSd90faPzifMBTwRcn6wKd6+nFj+lqjVVysvNG/J+l7ovacnrS+S96KnsjTId+fqIfD/5pg7bmjqa\n1KMeSVKPeti6YU5WhluSov8eVf36ek2/YbrCoYEv5S/9xVJVr6tWWX6ZGlobtOpPqxT6rxAhz2K9\n23a3uiVJvny2bpiTteGWpOJ/K1bTfzRp3k3zNCE8od/XxueM13233aeVc1fqs/WfyX/BV89/9hDy\nLHfltt2LrRvWZHW4JWl63nQ1rG/QPbPv0aRxk/puz83J1bLCZf3u63keIc9iV2/bvdi6YU3Wh1uS\nJo6bqENrD+mpxU/1xbu7pzvp67cJeXYZaNvuxdYNS7LqddxDCXkhvbLiFc27aZ6e/u+nR/T67d6Q\nr5y7UpLk+75q/qdGLx57UfWt9Vr1p1V99/1l/i9V+etK3TvnXnmel9Z/F1y/wbbtXldu3byuG67z\n/AyuiJ7nObmB/uXMXxQOhfWrX/wqrce9OuRXIuTBarzUqPqO+n7hrphSod+f/33f5548zR43W+V5\nvLYfwUrWzjEZ7tFCyN3Q5Xfpjf99Q53q7Hf71eGWpBzlaN3kdWzdCBThdgghD0bjpUZ92vHpNde3\nBwq3JN0y7ha2bgQqWTvHzDVuF3CNPBgJJTQ1Z+qAX7vRu1ETQv1fKhrmpwUcx8btEDby0eV5ntq6\n2jQ9PD3oUYB+uFRiGCHPLMINVxHuLELI04tww1WEO4sR8tQQbriKcI8hhPz6EG64inCPYYR8aIQb\nriLc6DNUyMvyy/TCr18YUyEn3HAV4cagxnrICTdcRbgxbGMt5IQbriLcGLFsDznhhqsIN9Im20JO\nuOEqwo2MsR5ywg1XEW6MGmshJ9xwFeFGYFwPOeGGqwg3nOFayAk3XEW44aygQ0644SrCPYAev0df\ndX6l+o56Lb9huW4O3xz0SNDoh5xww1W8A84VeoN9/NJxdfqd6lGPfuz5Meix8DPP83T75Nu1pGmJ\n/v7m39Wd6JbmSLdvuP2adwhy4Ro5EJSUN+6amhpVVFQokUho/fr1eu655/51cEc27quD3aUuSVKu\nchW9Iao5uXMCnhDffvutXnrpJb355ptKJBLq7Lz8xr4TJkzQpUuXJKV/I2fjhqsyeqkkkUjotttu\n04cffqj8/HwtWbJEBw4cUFFR0bAePNMGC3Yvwh28wYLd68pwXy3VkBNuuCqjl0oaGho0Z84cFRYW\nSpLWrFmjqqqqvnAHJVmwEbxkwR6O63nzZS6tIJukFO7W1lbNnDmz7/OCggLV1/fffPhJglR0dHSk\n5RyqV71WadU1t88YNyPlYwOjLaVwD+cn1GheKmntbtWf/+/Po/Z4sK1iSoXqTtbprvl3BT0K0E+y\ntqYU7vz8fMXj8b7P4/G4CgoKUjlkSvLD+frt5N/q+I/HFe+Oq0c98jX4Lxxc4x59iURCBw8e1PPP\nP68ffvhB7e3tQ95/qGvcqapQhXI7cjNybCCTQql88x133KGvv/5aZ86cUWdnpw4ePKj77rsvXbON\nyE05N+k3N/5Gayav0azwLOUoR564XOOKnJwcrVu3Ts3NzXrttdc0c+ZM5eXlBT0WYEpK4Q6Hw9q7\nd69WrFih4uJiPfzww4H/j8leBNxtBBwYuTHzJye/S3x3zSUULpW4Y7BLKJm8VOJ5nhobG7V48eKM\nHB8YqWTtTGnjtmSgDbxb3UGPhZ8NtIFPmjQp6LEAJ42Zjftq3yW+U+OlRi2ZuERTc6YGPQ6u0ruB\n19bW6g9/+ENGHoONG67iL5kCBkG44SoulQBAliHcAGAM4QYAYwg3ABhDuAHAGMINAMYQbgAwhnAD\ngDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcCPrPfHEE5o4ceI1H9LlN7y++vaSkpKA\nJwaGRriR9aLRqEKhkDo6Ovp99Lrytp6eHi1dujTAaYHkeAccZL1EIqHCwkK1tLQkve/EiRPV3Nys\n6dOnj8JkwMB4BxyMeTk5Odq2bZvy8vKGvF9ubq6efPJJog3nsXFjTBjO1s22DVewcQNKvnWzbcMS\nNm6MGUNt3WzbcAkbN/CzwbZutm1Yw8aNMWWgrZttG65h4waucPXWzbYNi9i4MeZcuXWzbcNFbNzA\nVXq3bkls2zCJjRtjUiKRUDgcVltbG+GGc5K1k3BjzOL8hKu4VAIAWYZwA4AxhBsAjCHcAGAM4QYA\nYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcAOA\nMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM4QYAY0Yc7k2bNqmo\nqEiLFi3SAw88oAsXLqRzLgDAIEYc7uXLl+vUqVNqamrSrbfeqq1bt6ZzLgDAIEYc7mg0qlDo8reX\nlZWppaUlbUMBAAYXTsdB9u/fr7Vr1w74tcrKyr4fRyIRRSKRdDwkAGSNWCymWCw27Pt7vu/7g30x\nGo2qra3tmtu3bNmi8vJySdLmzZv1xRdf6N1337324J6nIQ4PBIrzE65Kdm4OGe5k3nrrLb3++us6\nevSoJkyYcN0PDgSJ8xOuSnZujvhSSU1NjXbs2KFjx44NGG0AQGaMeOOeO3euOjs7NWXKFEnSXXfd\npVdffbX/wdlo4DDOT7gqo5dKUn1wIEicn3BVsnOTPzkJAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBj\nCDcAGEO4AcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4Ax\nhBsAjCHcAGAM4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAY\nwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDGEG4AMIZwA4AxhBsAjCHcAGAM\n4QYAYwg3ABhDuAHAGMINAMYQbgAwhnADgDGEGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCG\ncAOAMYQbAIwh3ABgTMrh3rlzp0KhkM6fP5+OeQAASaQU7ng8rtraWs2aNStd8wAAkkgp3Bs3btT2\n7dvTNQsAYBjCI/3GqqoqFRQUaOHChUPer7Kysu/HkUhEkUhkpA8JAFkpFospFosN+/6e7/v+YF+M\nRqNqa2u75vbNmzdry5Yt+uCDDzR58mTNnj1bjY2Nmjp1av+De56GODwQKM5PuCrZuTlkuAdz8uRJ\n3XPPPZo0aZIkqaWlRfn5+WpoaNC0adOG/eBAkDg/4aqMhPtqs2fP1ueff64pU6Zc14MDQeL8hKuS\nnZtpeR2353npOAwAYBjSsnEPenA2GjiM8xOuGpWNGwAwegg3ABhDuAHAGMINAMYQbgAwhnADgDGE\nGwCMIdwAYAzhBgBjCDcAGEO4AcAYwg0AxhBuADCGcAOAMYQbAIwh3ABgDOEGAGMINwAYk1XhjsVi\nQY/gJJ4XDBfnysBce14I9xjA84Lh4lwZmGvPS1aFGwDGAsINAMZ4/lDvAZ/qwT0vU4cGgKw2VJrD\nQT0wAGBkuFQCAMYQbgAwJmvDvXPnToVCIZ0/fz7oUZywadMmFRUVadGiRXrggQd04cKFoEcKVE1N\njebNm6e5c+dq27ZtQY/jhHg8rmXLlmn+/PlasGCB9uzZE/RIzkgkEiotLVV5eXnQo0jK0nDH43HV\n1tZq1qxZQY/ijOXLl+vUqVNqamrSrbfeqq1btwY9UmASiYSeeeYZ1dTU6PTp0zpw4IC+/PLLoMcK\n3Lhx47Rr1y6dOnVKn332mfbt28fz8rPdu3eruLjYmRdcZGW4N27cqO3btwc9hlOi0ahCocv/ucvK\nytTS0hLwRMFpaGjQnDlzVFhYqHHjxmnNmjWqqqoKeqzAzZgxQyUlJZKkvLw8FRUV6ezZswFPFbyW\nlhZVV1dr/fr1zrzgIuvCXVVVpYKCAi1cuDDoUZy1f/9+rVq1KugxAtPa2qqZM2f2fV5QUKDW1tYA\nJ3LPmTNndOLECZWVlQU9SuA2bNigHTt29C0+LsjoywEzJRqNqq2t7ZrbN2/erK1bt+qDDz7ou82V\nXyFHw2DPy5YtW/quzW3evFm5ublat27daI/nDFd+u+uq9vZ2PfTQQ9q9e7fy8vKCHidQhw8f1rRp\n01RaWurUH3s3Ge7a2toBbz958qSam5u1aNEiSZd/i7N48WI1NDRo2rRpozliIAZ7Xnq99dZbqq6u\n1tGjR0dpIjfl5+crHo/3fR6Px1VQUBDgRO7o6urSgw8+qEceeUT3339/0OMErq6uTocOHVJ1dbU6\nOjp08eJFPfbYY3r77beDHczPYoWFhf73338f9BhOOHLkiF9cXOyfO3cu6FEC19XV5d9yyy1+c3Oz\n/9NPP/mLFi3yT58+HfRYgevp6fEfffRRv6KiIuhRnBSLxfzVq1cHPYbv+77vzkWbDOC3xP/y7LPP\nqr29XdFoVKWlpXr66aeDHikw4XBYe/fu1YoVK1RcXKyHH35YRUVFQY8VuOPHj+udd97Rxx9/rNLS\nUpWWlqqmpibosZziSlMy+neVAADSL6s3bgDIRoQbAIwh3ABgDOEGAGMINwAYQ7gBwBjCDQDG/D8F\nLa+AcnIICgAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 36 }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(1/sqrt(2)*vector(1,1), 1/sqrt(2)*vector(1,-1), vector(-4,1))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}-4\\\\1\\end{matrix}\\right]$, and its projection on the basis: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\1\\end{matrix}\\right],\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}1\\\\-1\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\frac{1}{\\sqrt{2}}\\left[\\begin{matrix}-3\\\\-5\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFlhJREFUeJzt3X1wVPW9x/HPSTYJaqh3YCa1JgpxfEqwQIaW1HrVbTVA\nHXBa0LEwiHNnmP7htBYY7cN0KqE1SQsFh1Y7belY60Uc722lqGDkQTZ9gMqUOg4PtsUOuW5gghQc\nZAmBPJz7BybNw2726Zw9v9/u+8VkJtldzvnN+p23h182Wcd1XVcAAGsUBb0AAEB6CDcAWIZwA4Bl\nCDcAWIZwA4BlQn4e3HEcPw8PAHlrrBf8+X7F7bpuzj5WrlyZ0/PZ8sHzEv8j1/NpwwezYsbzkgxb\nJQBgGcINAJbJq3CHw+Ggl2AknhekilmJz7TnxXFT2VDJ9OCOk9J+DRAE5hOmSjabeXXFDQCFgHAD\ngGUINwBYhnADgGUINwBYhnADgGUINwBYhnADgGUINwBYhnADgGUINwBYhnADgGUINwBYhnADgGUI\nNwBYhnADgGUINwBYhnADgGUINwBYJutw9/X1qa6uTvPmzfNiPQCAJLIO9/r161VbWyvHcbxYDwAg\niazC3dHRoW3btmnp0qW8WzYA5Egom7+8fPlyrVmzRh9++GHCxzQ2Ng5+Hg6HFQ6HszklAOSdSCSi\nSCSS8uMdN8NL5VdffVWvvfaann76aUUiEa1du1avvPLK8IM7DlfiMBbzCVMlm82Mt0r27Nmjl19+\nWdXV1Vq4cKHeeOMNLVmyJNPDAQBSlPEV91BtbW360Y9+xBU3rMJ8wlS+XXHHOxEAwH+eXHEnPDhX\nNDAY8wlT5eyKGwCQG4QbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHA\nMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQb\nACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxD\nuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuAHAMoQbACxDuA33fu/76nP7gl4G\nAIOEgl4AEut3+/Xi2RdVpCJVl1SrtqxW14SuUbFTHPTSAATIcV3X9e3gjiMfD18QXjr7kqK9UUlS\niUrkyiXiHmE+Yapks0m4Dfe3C3/TG11vqEc9w24n4tljPmGqZLPJVonhqkur1d/VP+r2gZAf6Tmi\n9p72YRGfFJokx3FyvVQAOcI3Jw1X5pTp6tDVYz6mRz3qVa+O9BzRltgWnew7maPVAQgC4bZAbWmt\nSlSS9HEhhXTnZXeqIlSRg1UBCArhtkB1abX6NXq7ZKiQQrrtsts0fdz0HK0KQFAItwXKnDJ9IvSJ\nhPcTbaCwEG5LTCmdknC7pFe9RBsoIITbEvG2S0IK6ebSmyVJG89sDGJZAAJAuC0xcrtkYHtk9hWz\n9aXyL+lU/yniDRQIwm2RKaVTFProz9A97WtLriXeQAEh3BapLq2WpLjfiCTeQOHI6kfeo9GolixZ\novfff1+O4+grX/mKHnnkkX8fnB8p9lyP26MSJ/Frut/reU+bY5s1sWiiFl+5OIcrsw/zCVP5+rtK\nOjs71dnZqenTpysWi2nGjBn63e9+p5qampRODn8Q79QwnzBVstnMaqvkqquu0vTpl/7JXl5erpqa\nGh0/fjybQ8IDbJsA+c2zPe729na99dZbqq+v9+qQyALxBvKXJ78dMBaL6b777tP69etVXl4+7L7G\nxsbBz8PhsMLhsBenRAoG4r05tlkbz2xk2wQwVCQSUSQSSfnxWf8+7p6eHs2dO1df+MIXtGzZsuEH\nZw/RCOx5x8d8wlS+fnPSdV099NBDmjhxop588sm0T47cId6jMZ8wla/h/uMf/6g77rhDU6dOHfzF\n/S0tLZozZ05KJ0duEe/hmE+YircuwzDE+9+YT5jK15cDwj682gSwH+EuQMQbsBvhLlDEG7AX4S5g\nxBuwE+EucMQbsA/hBvEGLEO4IYl4AzYh3BhEvAE7EG4MQ7wB8xFujEK8AbMRbsRFvAFzEW4kRLwB\nMxFujIl4A+Yh3EiKeANmIdxICfEGzEG4kTLiDZiBcCMtxBsIHuFG2og3ECzCjYwQbyA4hBsZI95A\nMAg3skK8gdwj3Mga8QZyi3DDE8QbyB3CDc8QbyA3CDc8RbwB/xFueI54A/4i3PAF8Qb8U5DhPnnu\npF75+yv6xo5v6DO//Iz2RPcEvaS8RLwBf4SCXoDfevt7deDEAe2J7tGuo7u0J7pHH3R/oHGhcYpd\niKm4qFhlxWVBLzNvDcR7c2yzNp7ZqMVXLg56SYD1HNd1Xd8O7jjy8fBxnTx3Uns79uoP//cH7Tq6\nS4dPHlZpcal6+3t1vvf8qMdfFrpMZ799VsVFxTldZ6F5r+c9bY5t1sSiicbEO4j5BFKRbDbzKtxt\n7W0K/zqsK0quUFdPl1wlP/cd196htv9qy8HqYFq8CTdMlWw282qP+/ZJt2vFZ1bI/ehPMmXFZZp3\n07wcrAwSe96AV/Iq3EVOkdbOXqt1s9fpstBlKT0+PDns/8IwiHgD2currZKhdvxzh+b/z3zFLsZS\nevzMyplqvLNRc66fI8dxfF4dTNg2YasEpiqoPe6RDp88rM//+vM6df6Uevt7R91/+7W369v/+W2t\nalulN4+9Oew+Qu6/oOMd9HwCiRR0uCXpROyE7v7vu/Xu6XfV3ds9eHtZcZme+PwTevSzjw7e5rqu\nWt9tJeQ5FGS8TZhPIJ6CD7ckne85r/v/937tbt+trp4uSdL40vHa/dBuzbh6RsK/R8hzI6h4mzKf\nwEiE+yP9br8e3f6ofr7/5+rq6cro9duE3D9BxNuk+QSGItwj/GL/L/Tw1od12zW3Zf36bULurVzH\n28T5BCTCHdfv23+vUFFIn732s54el5BnL5fxNnU+AcIdIEKemVzF26/5dF1X+/fv1/PPP68JEybo\nu9/9rufnQH4j3AYh5KnLRby9nM+hsd60aZPOnTun8+fP6+tf/7rWrVvnyTlQOAi3wQj52PyOd7bz\nGS/W3d3d6uvrkyRdccUVamtr04wZiV+5BMRDuC1CyEfzM96ZzGeyWA9VUVGhzs7OgvrvBW8QbosR\n8kv8ine687lp0yYtX758zFgPKC4u1iOPPMI2CTJCuPNIIYfcj3inO5/bt2/XvffeqwsXLiR9LNsk\nyAbhzmOFFnKv453JfG7dulX333+/zp8f/aYcQ7FNgmwQ7gJSCCH3Mt6ZzmeyeLNNgmwR7gKWryH3\nKt7ZzOfWrVs1d+7cuPexTYJsEW4MGivk9ZX1WnnnSmtC7kW8s5nPlStX6nvf+17c+9gmQbYINxKy\nPeTZxjvT+RyI9uOPP66ZM2cO2zZhmwReINxImY0hzybemczn0GivWrVK0vA9b7ZJ4AXCjYzZEvJM\n453ufMaL9oCtW7dqwYIFuvLKK9kmQdYINzxjcsgziXc68zlWtAds375d//rXv7Ro0aKU1w3EQ7jh\nG9NCnm68U53PVKINeIlwI2dMCHk68U5lPok2gkC4EZigQp5qvJPNJ9FGUAg3jJHLkKcS77Hmk2gj\nSIQbxvI75MninWg+iTaCRrhhDT9CPla8480n0YYJCDes5VXIE8V75HwSbZjC93C3trZq2bJl6uvr\n09KlS/XNb34z5ZMD6cgm5PHiPXQ+iTZM4mu4+/r6dNNNN2nnzp2qrKzUpz/9ab3wwguqqalJ6eRA\nNtIN+ch4D8wn0YZpfA333r17tWrVKrW2tkqSfvCDH0iSvvWtb6V0csBLqYR8yqQp2nzuUrwf/I8H\n9fjjjxNtGMfXcP/mN7/R66+/rg0bNkiSNm7cqDfffFM/+clPBk8OAEjfWGkOZXPgVMLMFTdM4bqu\nXv/n61rVtkrX1VynTbdt0tXXX61jR44FvTRgmGRtLcrm4JWVlYpGo4NfR6NRVVVVZXNIwDeO42jO\n9XO0buE6zayZKUk6/u5xffKTnwx4ZUB6sgr3pz71KR05ckTt7e26ePGiXnzxRd17771erQ3w3N6u\nvdp3YZ9mll0K986dO3Xw4EHiDatkFe5QKKSnnnpKs2fPVm1trR544IHBV5QAphka7Vsvv1WSdNdd\ndxFvWIcfwEFBiBftofO5a9cu3X333brlllt04MCBIJcKJG1nVlfcgA3iRXskrrxhE8KNvJZKtAcQ\nb9iCcCNvpRPtAcQbNiDcyEuZRHsA8YbpCDfyTjbRHkC8YTLCjbziRbQHEG+YinAjb3gZ7QHEGyYi\n3MgLfkR7QKrxXr16tb7zne94em4gHn4AB9bLNNrpzudYP6TT3Nys73//+wqFQvrggw8UCmX1+9tQ\n4PgBHOQ1P6+0R0p05d3c3KympiZ1d3fLcRxFIhFf1wEQblgrl9EeMDLeA9Hu6uqSJMViMT333HM5\nWQsKF1slsJIX0c5mPge2TeIpLy9nuwRZYasEeSeIK+1Ra9i7N2GY2S6B3wg3rGJCtJ944gm1tLSo\nt7c37v1sl8BvbJXAGl5HO5P5HIj2wJ52ImyXIBtslSAvmHCl/bOf/UwrV65MGm2J7RL4i3DDeCZE\nW5KmT5+uWbNmqaysTOPHjx/zsWyXwE9slcBofkY70/k8d+6ctm7dql/96lfavXu3SktLdfbs2VGP\nY7sEmUo2m4QbxvL7StuL+Rwr4uPHj9dLL72U8GWDQCKEG1bKxfaI1/M5MuK9vb1atGgRWyZIG+GG\ndXK1p+3nfA5EvLi4WAsWLPDlHMhfhBtWyeU3IplPmIqXA8Iaprx6BDAd4YYRiDaQOsKNwBFtID2E\nG4Ei2kD6CDcCQ7SBzBBuBIJoA5kj3Mg5og1kh3Ajp4g2kD3CjZwh2oA3CDdygmgD3iHc8B3RBrxF\nuOErog14j3AjY139Y7+FF9EG/EG4kZFTfae04cwGHbpwKO79RBvwD+FGRv5+4e9y5CjSFRkVb6IN\n+ItwI22u6+qdi+/Ilate9Q6LN9EG/Me7mCJtp/pPqdvtHvx6IN4HLhzQib4TRBvwGVfcSNs/LvxD\n/eofdluvenWi74Q+Xvxxog34jHAjLQPbJCPDPeBU36mE37AE4A3CjbSM3CYZaeSeNwDvEW6kJd42\nyUjEG/AX4UbKkm2TDNWnPu3s2pn0h3QApI9XlSBlybZJij76M84Zp5qyGt1UepMuL7o8hysECgPh\nRsribZPEi/XE4okBrRAoDIQbKRm6TUKsgWARbqTkrHtWMTemcqecWAMBc1zXdX07uOPIx8Mjh1zX\nVcyNaXzR+KCX4hnmE6ZKNpuEGwWL+YSpks0mLwcEAMsQbgCwDOEGAMsQbgCwDOEGAMsQbgCwDOEG\nAMsQbgCwDOEGAMsQbgCwDOEGAMtkHO7HHntMNTU1mjZtmubPn68zZ854uS4AQAIZh3vWrFk6dOiQ\n3n77bd14441qaWnxcl0AgAQyDndDQ4OKii799fr6enV0dHi2KABAYp68kcIzzzyjhQsXxr2vsbFx\n8PNwOKxwOOzFKQEgb0QiEUUikZQfP+bv425oaFBnZ+eo25ubmzVv3jxJUlNTk/7617/qt7/97eiD\n8/uOYTDmE6by9Y0Unn32WW3YsEG7du3SuHHj0j45ECTmE6ZKNpsZb5W0trZqzZo1amtrixttAIA/\nMr7ivuGGG3Tx4kVNmDBBknTrrbfqpz/96fCDc0UDgzGfMBXvOQkkwHzCVLznJADkGcINAJYh3ABg\nGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcIN\nAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh\n3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABg\nGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcIN\nAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgGcINAJYh3ABgmazDvXbtWhUVFen06dNerAcAkERW4Y5G\no9qxY4cmTZrk1XoAAElkFe4VK1Zo9erVXq0FAJCCUKZ/ccuWLaqqqtLUqVPHfFxjY+Pg5+FwWOFw\nONNTAkBeikQiikQiKT/ecV3XTXRnQ0ODOjs7R93e1NSk5uZmbd++XR/72MdUXV2tv/zlL5o4ceLw\ngzuOxjg8ECjmE6ZKNptjhjuRgwcP6q677tLll18uSero6FBlZaX27dunioqKlE8OBIn5hKl8CfdI\n1dXV2r9/vyZMmJDWyYEgMZ8wVbLZ9OR13I7jeHEYAEAKPLniTnhwrmhgMOYTpsrJFTcAIHcINwBY\nhnADgGUINwBYhnADgGUINwBYhnADgGUINwBYhnADgGUINwBYhnADgGUINwBYhnADgGUINwBYhnAD\ngGUINwBYhnADgGUINwBYJq/CHYlEgl6CkXhekCpmJT7TnhfCXQB4XpAqZiU+056XvAo3ABQCwg0A\nlnHcsd4DPtuDO45fhwaAvDZWmkNBnRgAkBm2SgDAMoQbACyTt+Feu3atioqKdPr06aCXYoTHHntM\nNTU1mjZtmubPn68zZ84EvaRAtba26uabb9YNN9ygH/7wh0EvxwjRaFSf+9znNGXKFN1yyy368Y9/\nHPSSjNHX16e6ujrNmzcv6KVIytNwR6NR7dixQ5MmTQp6KcaYNWuWDh06pLfffls33nijWlpagl5S\nYPr6+vTVr35Vra2tOnz4sF544QW98847QS8rcCUlJXryySd16NAh/fnPf9bTTz/N8/KR9evXq7a2\n1pgXXORluFesWKHVq1cHvQyjNDQ0qKjo0n/u+vp6dXR0BLyi4Ozbt0/XX3+9Jk+erJKSEn35y1/W\nli1bgl5W4K666ipNnz5dklReXq6amhodP3484FUFr6OjQ9u2bdPSpUuNecFF3oV7y5Ytqqqq0tSp\nU4NeirGeeeYZ3XPPPUEvIzDHjh3TNddcM/h1VVWVjh07FuCKzNPe3q633npL9fX1QS8lcMuXL9ea\nNWsGL3xM4OvLAf3S0NCgzs7OUbc3NTWppaVF27dvH7zNlP9D5kKi56W5uXlwb66pqUmlpaVatGhR\nrpdnDFP+uWuqWCym++67T+vXr1d5eXnQywnUq6++qoqKCtXV1Rn1Y+9WhnvHjh1xbz948KCOHj2q\nadOmSbr0T5wZM2Zo3759qqioyOUSA5HoeRnw7LPPatu2bdq1a1eOVmSmyspKRaPRwa+j0aiqqqoC\nXJE5enp6tGDBAi1evFhf/OIXg15O4Pbs2aOXX35Z27ZtU3d3tz788EMtWbJEzz33XLALc/PY5MmT\n3VOnTgW9DCO89tprbm1trXvy5MmglxK4np4e97rrrnOPHj3qXrhwwZ02bZp7+PDhoJcVuP7+fvfB\nBx90ly1bFvRSjBSJRNy5c+cGvQzXdV3XnE0bH/BP4n/72te+plgspoaGBtXV1enhhx8OekmBCYVC\neuqppzR79mzV1tbqgQceUE1NTdDLCtyf/vQnbdy4Ubt371ZdXZ3q6urU2toa9LKMYkpTfP1dJQAA\n7+X1FTcA5CPCDQCWIdwAYBnCDQCWIdwAYBnCDQCWIdwAYJn/B5E3MkNmUWEQAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [ "draw_projections(1/sqrt(5)*vector(2,1), 1/sqrt(5)*vector(-1,2), vector(-4,1))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The vector $\\left[\\begin{matrix}-4\\\\1\\end{matrix}\\right]$, and its projection on the basis: $\\frac{1}{\\sqrt{5}}\\left[\\begin{matrix}2\\\\1\\end{matrix}\\right],\\frac{1}{\\sqrt{5}}\\left[\\begin{matrix}-1\\\\2\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "html": [ "The vector in this basis is: $\\frac{1}{\\sqrt{5}}\\left[\\begin{matrix}-7\\\\6\\end{matrix}\\right]$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFktJREFUeJzt3X9s1fW9x/HXtz2lpVamoEjoUWCA2LpRKsHqMrJDXEEa\naxaGmRjHcifbbszQSsTl7o9LMQMirJAuuJFMjXfDkexqTMGUDqw96KjS63BstG67LOBOIdwBdUAF\nSnv6vX+wdi39cU7Pr+/nc87zsZBAe873fDj77Lk3H76ljuu6rgAA1sjyegEAgLEh3ABgGcINAJYh\n3ABgGcINAJbxJfPijuMk8/IAkLZGu+Ev6RO367op+7Fu3bqUvp4tP3hfhv+R6v1pww/2ihnvSyQc\nlQCAZQg3AFgmrcIdCAS8XoKReF8QLfbK8Ex7Xxw3mgOVWC/uOFGd1wBeYH/CVJH2ZlpN3ACQCQg3\nAFiGcAOAZQg3AFiGcAOAZQg3AFiGcAOAZQg3AFiGcAOAZQg3AFiGcAOAZQg3AFiGcAOAZQg3AFiG\ncAOAZQg3AFiGcAOAZQg3AFiGcAOAZeIOdzgcVmlpqSorKxOxHgBABHGHu7a2VsXFxXIcJxHrAQBE\nEFe429vbVV9fr1WrVvHdsgEgRXzxPPmZZ57Rli1bdOHChREfU11d3f/zQCCgQCAQz0sCQNoJBoMK\nBoNRP95xYxyV33rrLe3du1cvvviigsGgampqtGfPnsEXdxwmcRiL/QlTRdqbMR+VNDc3a/fu3Zox\nY4ZWrFihd955RytXroz1cgCAKMU8cQ904MAB/fjHP2bihlXYnzBV0ibu4V4IAJB8CZm4R7w4Ew0M\nxv6EqVI2cQMAUoNwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZw\nA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4Bl\nCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcA\nWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZwA4BlCDcAWIZw\nA4BlCDcS7uDlg2rravN6GUDaItxIuBPdJ/T2pbfV0Nmgbrfb6+UAaYdwIylcuTrWfUw7L+xUR7jD\n6+UAaYVwI2nCCutC7wXturCLoxMggQg3kq5HPWq61MTRCZAghBsp0aMejk6ABCHcSBmOToDEINxI\nOY5OgPgQbniiRz36S/df9O6ld71eCmAdn9cLQObxySdHju7Ju0eleaVeLwewTlzhDoVCWrlypf7+\n97/LcRx997vf1VNPPZWotSHNZCtbWcrqD3auk+v1kgArxRXunJwcbdu2TfPmzVNnZ6fmz5+v8vJy\nFRUVJWp9SAM++dSjHoUV1ndu+g7BBuIU1xn3lClTNG/ePElSQUGBioqKdOrUqYQsDPbzyacc5Wh+\n3nx9+3PfliT9qetPHq8KsF/CzrhPnDihjz76SGVlZYm6JCyVrWz55NP8vPmDjkQmZU1S8HJQJXkl\nHq8QsFtCwt3Z2anly5ertrZWBQUFgz5XXV3d//NAIKBAIJCIl4TBHrzhQY3PGj/kSOSRCY9oxz92\n6MiVI8QbGCAYDCoYDEb9eMd1XTeeF+zu7tZDDz2kpUuXqqqqavDFHUdxXh5pZuf5nTrXe05P3/y0\n10thf8JYkfZmXGfcruvqiSeeUHFx8ZBoA8N5ZMIjkqQjV454vBLAXnGF++DBg9q5c6eamppUWlqq\n0tJSNTQ0JGptSEO5Tm7/WTeA2MR9VDLqxfmjKIbR5XZpxz92KDA+4OlZN/sTpkrqUQkQC6ZuID6E\nG57grBuIHeGGJ5i6gdgRbniGqRuIDeGGZ5i6gdgQbniKqRsYO8INTzF1A2NHuOE5pm5gbAg3PMfU\nDYwN4YYRmLqB6BFuGIGpG4ge4YYxmLqB6BBuGIOpG4gO4YZRmLqByAg3jMLUDURGuGEcpm5gdIQb\nxmHqBkZHuGEkpm5gZIQbRmLqBkZGuGEspm5geIQbxmLqBoZHuGE0pm5gKMINozF1A0MRbhiPqRsY\njHDDeEzdwGCEG1Zg6gb+hXDDCkzdwL9kZLjPfHZGe/68R8/tf073vXSfmkPNXi8JUWDqBq7xeb2A\nZOvp7dEf/++Pag41q/F4o5pDzfr0yqfK8+Wps6tT2VnZys3O9XqZiMLAqbskr8Tr5QCecVzXdZN2\nccdREi8/rDOfndH77e/rvU/eU+PxRrWdadO47HHq6e3R5Z7LQx4/3jdeF//jorKzslO6TsSmy+3S\njn/sUGB8IO54e7E/gWhE2ptpNXEfOHFAgf8K6IacG3Sp+5JcXfuNd4W7RnzOgqkLiLZFmLqBNDvj\nXjhtodbct0buP/8TSW52rirnVKZgZUgkzrqR6dIq3FlOlmqW1Gjrkq0a7xsf1eMD0wPJXxgSijtM\nkOnS7oy7z/6/7teyXy9T59XOqB5/b+G9qv5KtR6c9aAcx0ny6hCvvrPue3ru0cJbF8Z0Dc64YapI\nezOtJu6BymeW69CqQ7rthtvkyxr+KH/hHQtV/1i9ygrL1HKyRRW/qlDW81ly1jsqe6lMe/93L//D\nNlSuk6vw2bAO+w5r9+7dXi8HSKm0DbckFd9arCP/fkR33XKX8nx5gz6Xm52rh+c8rKWzl+qDVR/I\nXeeq9z97CblFLr5+UZJU+5tarV69Wt3d3R6vCEiNtD0qGehy92U98t+PqOlEky51X5Ik3TjuRjV9\nq0nzp84f8Xmu66rhWIPWH1ivQycPDfocRyveW79+vS49cElT756qH/p/qJkzZ2rPnj2aNm1aVM83\nZX8C18vYo5KBxueM1+4Vu/W9+d9Tfk6+pGtfmDNvyrxRn+c4DhO54WoraiVJ9zx2j9ra2vTFL36R\noxOkvYwIt3TtDpKtS7Zq25JtynayY7p/m5Cbp+til061ntLyzcsVDod18eJFrVixgqMTpLWMOCq5\n3rsn3pUvy6cv3fGlhF6Xo5XUWr9+vaqrq5V7Y65e+OQFvf7c6/rtS7+VJOXn50c8OjF1fwKR9mZG\nhjtVCHly9YVbkp577zlNvXuqqiZW9X8+Oztb+fn52rlzpx5++OEhz8/0/QlzccbtIY5WUqfvrPvL\nq77c/7GBRyfPPvusV0sDEo5wpxAhT56BZ90D+Xw+9fb26tNPP/VoZUDiEW4PEfLEGjh1+3w+5eXl\nafny5Tp69Khefvllj1cHJE5a/euAtusL+dLZSyUNPSOv+FVF/2M5Ix9q4NTt7/TrRz/6kWbOnOn1\nsoCEI9wGI+TR8/l88vl8Ov6z45q6faru/7f7iTbSFkclFuFoZSjHcQYdifz6tV+r468dchek9+8b\nmY3bAdNIpt1++Oabb+r111/X888/P2i6Pnv+rF7rfU3O/zh6avFTIz6f/QlTcR93Bsu0kA+07sN1\nmjhzop6++ekRH8P+hKkIN/qNFvKywjKt+8q6tAl5NFN3ovbn+vXr9c4774zpObm5uXr55Zd1++23\nx/36SD8Z9T0nMbqx/GWn7SG/5XO3qOPDDk1cMDHpr9XZ2anm5mb19PRE/Ry/36+bb745iatCOmPi\nRr90m8gjTd2J2p/nzp3THXfcoUuXLkX1+Pz8fL3//vuaO3du3K+N9MSXvCNqo9210jeR9921ct9L\n9xl/18otn7slJXeYTJo0SU8++aTy8vIiPjY/P19bt24l2ogLEzeiZuNEPtrUncj9Gc3UnZubq4qK\nCr3xxhtGvUcwD385iaSxJeQj3WGS6P1ZWVmp+vp69fb2Dvt5v9+vjz/+WAUFBQl7TaQnwo2UMTXk\nI03didqfjY2N+upXvzrqYzjXxlhwxo2UMfWMPFln3Y2NjXIcpz/ax44d07PPPjvkrDs/P181NTVE\nGwnDxI2U8XIiH27qjnV/Xj9hHzt2rP8rN68/6+ZcG7HgqATGSnXIrz/rHuv+HC3YA61du1bbt2/X\nlStX5Pf71dbWphtvvDH+3wAyBuGGNZId8uun7mj3Z7TB7tM3dUviXBsxIdywVjJCPnDqjrQ/xxrs\ngWprazVp0iQ9/vjjUa8N6JP0cDc0NKiqqkrhcFirVq3SD37wg6hfHBiLRIR84NT99JKnh92f8QQb\nSISkhjscDmvOnDl6++23VVhYqAULFmjXrl0qKiqK6sWBeMQa8r6pu2pi1aD9SbBhiqTeDtjS0qJZ\ns2Zp+vTpysnJ0aOPPqq6urp4LglELdbbD1fPXj3oOsPd1ue6LtGGseL61wFPnjw56J+l9Pv9OnRo\n8OTDLVAwwSEdUoUqhnx8uP05a9asVCwJiFlc4Y4myhyVwBSu6+o3f/2NdrTt0KKFi1Q1sUr5t+Tr\nDx/8gekaRonU1rjCXVhYqFAo1P/rUCgkv98fzyWBpAn1hPTnSX/WooWL+j/22ZnPPFwREJu4/nKy\np6dHc+bMUWNjo6ZOnap7772Xv5yEcf7W/Te92flm/6+/NeFbuin7JvYnjJXU74Dj8/m0fft2LVmy\nROFwWE888UR/tAGvjRRswHZ8AQ7STrTBZn/CVHzPSWQMJmxkCsIN6xFsZBrCDWsRbGQqwg3rEGxk\nOsINaxBs4BrCDeMRbGAwwg1jEWxgeIQbxiHYwOgIN4xBsIHoEG54jmADY0O44RmCDcSGcCPlCDYQ\nH8KNlCHYQGIQbiQdwQYSi3AjaQg2kByEGwlHsIHkItxIGIINpAbhRtwINpBahBsxI9iANwg3xoxg\nA94i3IgawQbMQLgREcEGzEK4MSKCDZiJcGMIgg2YjXCjH8EG7EC4QbAByxDuDEawATsR7gxEsAG7\nEe4MQrCB9EC4MwDBBtIL4U5jBBtIT4Q7DRFsIL0R7jRCsIHMQLgN47quDl4+qNnjZus2321RPYdg\nA5mFcBumtatVh7sOK9QT0ooJK0Z9LMEGMhPhNsjZ8FkduHxArlx1hDvU3t0uf45/yOMINpDZHNd1\n3aRd3HGUxMunlavuVf3y/C/V6Xb2f2xy9uRBUzfBTiz2J0wVaW8ycRvAdV3t+2yfLruXB328b+ru\nVS/BBtCPidsAR68c1YHLB9SjnlEfR7ATi/0JUzFxG67vXHu0aC/OX6yi3KIUrgqAybK8XkAmu+pe\nVd3FuoiT9u+7fp+iFQGwAeH2yEjn2sPpO+sGAIlwe6a1q1WfdH+isMIRH9ujHr13+b0UrAqADQi3\nB86Gz6rpclPEI5KBzoTPMHUDkMRfTnriQviCbs2+dczP63K7krAaALbhdkBkLPYnTBVpb3JUAgCW\nIdwAYBnCDQCWIdwAYBnCDQCWIdwAYBnCDQCWIdwAYBnCDQCWIdwAYBnCDQCWIdwAYBnCDQCWIdwA\nYBnCDQCWiTnca9euVVFRkUpKSrRs2TKdP38+kesCAIwg5nAvXrxYra2tOnLkiO68805t2rQpkesC\nAIwg5nCXl5crK+va08vKytTezvdDBIBUSMj3nHzllVe0YsWKYT9XXV3d//NAIKBAIJCIlwSAtBEM\nBhUMBqN+/Kjfc7K8vFynT58e8vGNGzeqsrJSkrRhwwYdPnxYb7zxxtCL8z39YDD2J0wVaW/G9c2C\nX331Vf385z9XY2Oj8vLyxvzigJfYnzBVpL0Z81FJQ0ODtmzZogMHDgwbbQBAcsQ8cc+ePVtXr17V\nxIkTJUn333+/fvrTnw6+OBMNDMb+hKmSelQS74sDXmJ/wlSR9iZfOQkAliHcAGAZwg0AliHcAGAZ\nwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0A\nliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHc\nAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZ\nwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0A\nliHcAGAZwg0AliHcAGAZwg0AliHcAGAZwg0Alok73DU1NcrKylJHR0ci1gMAiCCucIdCIe3fv1/T\npk1L1HoAABHEFe41a9Zo8+bNiVoLACAKvlifWFdXJ7/fr7lz5476uOrq6v6fBwIBBQKBWF8SANJS\nMBhUMBiM+vGO67ruSJ8sLy/X6dOnh3x8w4YN2rhxo/bt26cJEyZoxowZ+vDDDzVp0qTBF3ccjXJ5\nwFPsT5gq0t4cNdwjOXr0qB544AHl5+dLktrb21VYWKiWlhZNnjw56hcHvMT+hKmSEu7rzZgxQ7/7\n3e80ceLEMb044CX2J0wVaW8m5D5ux3EScRkAQBQSMnGPeHEmGhiM/QlTpWTiBgCkDuEGAMsQbgCw\nDOEGAMsQbgCwDOEGAMsQbgCwDOEGAMsQbgCwDOEGAMsQbgCwDOEGAMsQbgCwDOEGAMsQbgCwDOEG\nAMsQbgCwDOEGAMukVbiDwaDXSzAS7wuixV4ZnmnvC+HOALwviBZ7ZXimvS9pFW4AyASEGwAs47ij\nfQ/4eC/uOMm6NACktdHS7PPqhQEAseGoBAAsQ7gBwDJpG+6amhplZWWpo6PD66UYYe3atSoqKlJJ\nSYmWLVum8+fPe70kTzU0NOiuu+7S7Nmz9cILL3i9HCOEQiEtWrRId999t77whS/oJz/5iddLMkY4\nHFZpaakqKyu9XoqkNA13KBTS/v37NW3aNK+XYozFixertbVVR44c0Z133qlNmzZ5vSTPhMNhff/7\n31dDQ4Pa2tq0a9cuffzxx14vy3M5OTnatm2bWltb9cEHH+jFF1/kffmn2tpaFRcXG3PDRVqGe82a\nNdq8ebPXyzBKeXm5srKu/dddVlam9vZ2j1fknZaWFs2aNUvTp09XTk6OHn30UdXV1Xm9LM9NmTJF\n8+bNkyQVFBSoqKhIp06d8nhV3mtvb1d9fb1WrVplzA0XaRfuuro6+f1+zZ071+ulGOuVV15RRUWF\n18vwzMmTJ3X77bf3/9rv9+vkyZMersg8J06c0EcffaSysjKvl+K5Z555Rlu2bOkffEyQ1NsBk6W8\nvFynT58e8vENGzZo06ZN2rdvX//HTPl/yFQY6X3ZuHFj/9nchg0bNG7cOD322GOpXp4xTPnjrqk6\nOzu1fPly1dbWqqCgwOvleOqtt97S5MmTVVpaatSXvVsZ7v379w/78aNHj+r48eMqKSmRdO2POPPn\nz1dLS4smT56cyiV6YqT3pc+rr76q+vp6NTY2pmhFZiosLFQoFOr/dSgUkt/v93BF5uju7tbXv/51\nPf744/ra177m9XI819zcrN27d6u+vl5XrlzRhQsXtHLlSv3iF7/wdmFuGps+fbp77tw5r5dhhL17\n97rFxcXumTNnvF6K57q7u93Pf/7z7vHjx92uri63pKTEbWtr83pZnuvt7XW/+c1vulVVVV4vxUjB\nYNB96KGHvF6G67qua86hTRLwR+J/Wb16tTo7O1VeXq7S0lI9+eSTXi/JMz6fT9u3b9eSJUtUXFys\nb3zjGyoqKvJ6WZ47ePCgdu7cqaamJpWWlqq0tFQNDQ1eL8sopjQlqf9WCQAg8dJ64gaAdES4AcAy\nhBsALEO4AcAyhBsALEO4AcAyhBsALPP/o0V7v6EC+toAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 38 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "

^ Electron Spin

\n", "
    \n", "
  • The \"use_y\" flag will determine whether y spin states are included.
  • \n", "
  • The \"complex\" flag tells whether to include complex amplitudes.
  • \n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import sglib\n", "reload(sglib)\n", "from sglib import *\n", "#\n", "set_font_size(3) # Font size of 3 or 4 works pretty well\n", "z=1; x=2; y=3 # Don't change this line!!!\n", "prob = electron_problem(\n", " min_int=0, max_int=5, use_y=False, complex=False)\n", "#prob.set_debug(True) # Probably leave this commented out\n", "prob.new()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Given the input state: $\\;-| +z \\rangle$\n", "

\n", "If you do the observation associated with the matrix $\\left[\\begin{matrix}0 & 1\\\\1 & 0\\end{matrix}\\right]$\n", "

\n", "What is the probability of seeing the $1$ eigenvalue\n", "

\n", "
" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 39 }, { "cell_type": "code", "collapsed": false, "input": [ "answer = 10/23\n", "prob.check(answer)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "The answer is: $\\;\\frac{1}{2}$, or approximately $\\;0.5000$" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 40 }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

\n", "You can ignore everything below this point.\n", "

\n", "
" ] }, { "cell_type": "code", "collapsed": false, "input": [ "Print(prob.latex)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Given the input state: $\\;-| +z \\rangle$\n", "

\n", "If you do the observation associated with the matrix $\\left[\\begin{matrix}0 & 1\\\\1 & 0\\end{matrix}\\right]$\n", "

\n", "What is the probability of seeing the $1$ eigenvalue\n", "

\n", "
" ], "metadata": {}, "output_type": "display_data", "text": [ "" ] } ], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [ "print(prob.latex)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Given the input state: $\\;-| +z \\rangle$\n", "

\n", "If you do the observation associated with the matrix $\\left[\\begin{matrix}0 & 1\\\\1 & 0\\end{matrix}\\right]$\n", "

\n", "What is the probability of seeing the $1$ eigenvalue\n", "

\n", "\n" ] } ], "prompt_number": 42 } ], "metadata": {} } ] }